KOBELCO **WELDING OF EUROPE**

PREMIARC

Contents

KOBE STEEL, LTD.	3
Corporate profile	
KOBELCO WELDING OF EUROPE B.V.	4
Introduction	
Foreword	
Introduction of Kobelco Flux Cored Wires (FCW)	6
High efficiency	
Recommended Welding Parameters	7
Stainless Steel Flux Cored Wire (DW Series)	
Carbon Steel Flux Cored Wire (DW Series)	
Welding with Kobelco Flux Cored Wires (FCW)	8
Products	12
Ferrite Diagrams	78
Welding positions	79
AWS A5.20/A5.20M:2021, A5.29/A5.29M:2022	80
AWS A5.22-2012	82
AWS A5.34/A5.34M:2020	84
EN ISO 17632:2015	86
EN ISO 17633:2018	88
EN ISO 18276:2017	90
Abbreviations	92
Storage & Handling	93
List of addresses	94

Corporate profile

The Kobe Steel Group operates in a wide range of fields that provide the very foundation of society, including both the materials sector (iron and steel, welding, aluminium and copper) and the machinery sector (industrial machinery, construction machinery, engineering, and the environmental business). The Kobe Steel Group also engage in diverse operations such as electric power supply, real estate and electronic materials.

KOBELCO is the corporate logo mark and brand name of the Kobe Steel Group. Kobe Steel Group aims to maintain the reputation of "KOBELCO, as the one and only trustworthy brand" by supplying the same top quality products, irregardless of where in the world these are manufactured and enhancing our technical support infrastructure which makes it possible for all our customers to carry out their welding jobs confidently.

We will continually research and develop new products and welding processes to contribute and meet the needs of industry and society.

Our corporate goal is to gain recognition as being not only the leading manufacturer in Japan but also the leading welding products manufacturer in the world.

Introduction

Kobelco Welding of Europe B.V. (KWE) is a modern manufacturer of Flux Cored Wire (FCW) which was established in 1994 under license from Kobe Steel, Ltd. Benefiting from Kobe Steel, Ltd.'s almost 90 years of expertise in welding consumables. Kobelco Welding of Europe B.V. has established itself as a leading producer and supplier of flux cored wire for stainless and carbon steel. The wide range of welding consumables covers almost the entire market for stainless and carbon steel.

To satisfy market demand for other welding consumables besides FCW, KWE provides a wide range of consumables manufactured by Kobe Steel, Ltd.

Kobelco welding consumables are used for welding operations all over the world. Industries such as shipbuilding, offshore, construction and many other industrial sectors rely on Kobelco welding consumables.

Foreword

Note the following preliminary information on use of this welding handbook.

1. Standards for welding consumables

AWS : American Welding Society

EN : European Norm

2. Classifications

Welding consumables are classified in accordance with basically the mechanical and / or chemical requirements of the standards, excluding such requirements as size, length, marking and identification manners.

3. The test conditions

- (1) Unless otherwise specified, the testing method and condition are as per EN or AWS standards.
- (2) All mechanical and chemical data are given separately as "Typical" (one of the manufacturer's test data) and "Guaranty" (the guaranty value).
- (3) Unless otherwise specified, all mechanical test are carried out in the as-welded condition.

4. Packing data

Packaging data shows product length, and mass, the approximate volume.

5. Welding Parameters

Welding parameters indicate the recommended current range of for specific welding positions.

6. Approvals

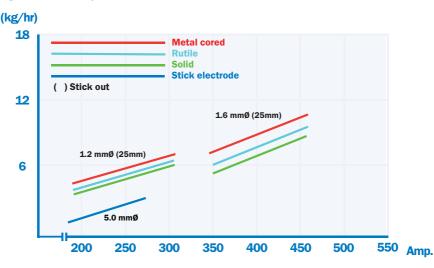
They may be canceled, added, or changed and may not necessarily be applied to all the welding consumables produced at the plants of Kobe Steel. Therefore, please contact with Global Operations & Marketing Dept. of the Welding Business of Kobe Steel when you need the ship classification approval of a particular welding consumable to be used.

7. Further information

For further information about welding consumable specifications, classifications, approvals and packages, please contact the nearest Kobelco office or sales representative.

Introduction of Kobelco Flux Cored Wires

Metal fabricators face the increasingly difficult challenge of decreasing costs while improving product quality, productivity and the workers environment. In addition, high labour force turnover and lower skill levels are dictating a need for welding processes and consumables that are easy to use and require less operator training.


The consumption of flux cored wires (tubular wires) is increasing every year due to their excellent performance and the economical advantages of these wires. Requirements for an increased welded joint quality and productivity pave way for a wide application of flux cored wires.

The gas shielded Flux Cored Arc Welding (FCAW) process using Kobelco flux cored wire has the potential to meet current needs and is flexible enough to meet even more demanding requirements in the future. This is due to more than 50 years of research and development of flux cored wires.

Kobelco flux cored wires come in many different types in response to market requirements. Their main characteristics of superior operability, high deposition rate and excellent wire feeding are well known in the welding industry. They make a great contribution to the reduction of the total costs of welding and the improvement of the welder's working environment.

The important difference between welding with solid wire and tubular flux cored wire (FCW) is performance in productivity and weld metal integrity, particularly with respect to lack of fusion (penetration). The productivity (higher deposition rate) from FCW relies on the I²R effect (resistance heating), which is much greater than with solid wire at a given current. With solid wire the total cross section carries all the current, but with metal cored wires a part amount of the current is carried by the core and, in the case of rutile FCW's, all of the current is conducted by the outer metal sheath (tube) to give the highest current density (A/mm²).

High efficiency

Carbon Steel Flux Cored Wire (DW Series)

Recommended Welding Parameters (Shielding gas: 80%Ar - 20%CO₂)

Wire Diameter (mm)	Wire Speed (m/min.)	Welding Current (A)	Arc Voltage (V)	Deposition Rate (kg/hr)	Wire Stick Out (mm)	Shielding Gas Flow Rate (litres/min.)
	5.0	5.0 150 22-24		1.9		
1.0	8.0	200	25-29	3.1	20-25	20.25
1.2	10.0	250	28-32	3.9		20-25
	12.0	300	31-35	4.6		

Table shown is approximate values that will vary with change in welding conditions. DC-Electrode positive. Gas flow rate is measured at the torch nozzle.

Carbon Steel Metal Cored Wire (MX Series)

Recommended Welding Parameters (Shielding gas: 80%Ar - 20%CO₂)

		* (* * * 00*		27		
Wire Diameter (mm)	Wire Speed (m/min.)	Welding Current (A)	Arc Voltage (V)	Deposition Rate (kg/hr)	Wire Stick Out (mm)	Shielding Gas Flow Rate (litres/min.)
	7.6	200	28-31	3.4		
1.2	9.5	240	29-33	4.3	15-20	20-25
1.2	11.0	280	30-34	5.0	15-20	20-25
	13.5	320	32-36	6.1		
	6.4	230	27-29	3.9		
1.4	7.6	270	28-32	4.8		
1.4	10.2	320	30-34	6.4	20-25	20-25
	11.7	370	31-36	7.3		

Table shown is approximate values that will vary with change in welding conditions. DC-Electrode positive. Gas flow rate is measured at the torch nozzle.

Stainless Steel Flux Cored Wire (DW Series)

Recommended Welding Parameters (Shielding gas: 80%Ar - 20%CO₂)

Wire Diameter (mm)	Wire Speed (m/min.)	Welding Current (A)	Arc Voltage (V)	Deposition Rate (kg/hr)	Wire Stick Out (mm)	Shielding Gas Flow Rate (litres/min.)
	4.0	120	.20 20-24			
1.0	6.0	150	22-26	2.2	15-20	
1.2	8.5	200	26-30	3.2		20-25
	12.0	250	28-33	4.4		

Table shown is approximate values that will vary with change in welding conditions. DC-Electrode positive. Gas flow rate is measured at the torch nozzle.

Welding with Kobelco Flux Cored Wires

Before welding, the shielding gas to be applied, parameters and welding method must be determined.

Shielding gases

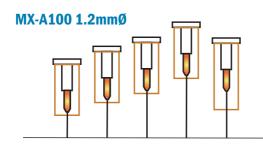
The proper gas flow rate (20 - 25 litres/min) and gas composition is very important for the bead appearance, weldability and the mechanical properties of the weld metal.

Welding parameters

Welding current and voltage influence the arc stability, bead appearance, penetration, spatter, etc.

A proper welding current depends on type and size of wire and welding position. Welding speed and stick-out should also be adjusted for optimum results.

Welding technique and torch angle


For welding stainless steel FCW, backhand welding achieves best results. Either backhand or forehand can be used with carbon steel FCW

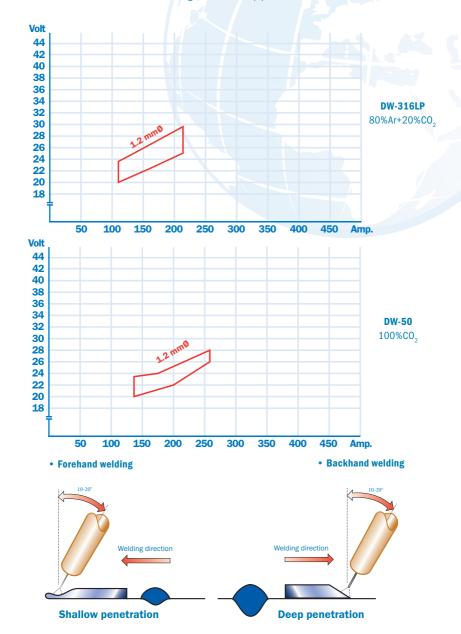
Importance of wire stick-out length

Wire stick-out describes the distance between the contact tip of the welding torch and the base material. For a given wire feed rate, lengthening of the wire stick out has the effect of reducing the amperage drawn from the power source.

Increasing the wire feed speed to compensate for the current (amperage) drop will result in a significant increase in weld metal deposition rate.

The higher deposition rate is due to the 1²R effect (resistance heating of the wire) as all of the current is conducted by the thin outer metal sheath (tube) to give a high current density (A/mm²) in the FCW.

For non mechanised welding, a longer gas cup (gas shroud) can make it easier for the welder to maintain a long stick-out and it is usual to use a longer gas cup for FCW than with solid wire.


Wire Stick Out (mm)	12	18	25	30	25
Wire Feed (m/min)	8.5	8.5	8.5	8.5	12
Current (Amps)	300	260	230	220	300
Deposition (Kg/hr)	4	4	4	4	6

The table above shows that increasing stick-out length leads to a decrease in welding current. Due to constant wire feed speed, deposition rate remains the same. When the wire feed speed is increased to restore the original welding current, deposition rate increases substantially.

Example welding parameters for positional welding

Recommended Parameter Range, for vertical up position

Detailed Product Information

Carbon Steel

Product	Description	Filler Group EN ISO 9606-01	Process EN ISO 4063	Page
DW-50	Mild steel and Y.S.: 420MPa steel	FM1	136	12
DW-A50	Mild steel and Y.S.: 420MPa steel	FM1	136	13
MX-A100	Mild steel and Y.S.: 420MPa steel	FM1	138	14
MX-A100R	Mild steel and Y.S.: 420MPa steel	FM1	138	15
MX-A70C6LF	Mild steel and Y.S.: 420MPa steel	FM1	138	16
MX-100T	Mild steel and Y.S.: 420MPa steel	FM1	138	17
MX-A200	Mild steel and Y.S.: 420MPa steel	FM1	136	18
MX-200E	Mild steel and Y.S.: 420MPa steel	FM1	136	19
DW-A51B	Mild steel and Y.S.: 420MPa steel (Basic type)	FM1	136	20
DW-55E	Y.S.: 420MPa steel for low temperature steel	FM1	136	21
DW-A55E	Y.S.: 460MPa steel for low temperature steel	FM1	136	22
DW-A55ESR	Y.S.: 420MPa steel for low temperature steel	FM1	136	23
DW-A55S	Y.S.: 460MPa steel	FM1	136	24
DW-A55EH	Y.S.: 420MPa steel for low temperature steel	FM1	136	25
MX-A55S	Y.S.: 460MPa steel for low temperature steel	FM1	138	26
DW-A81Ni1	Y.S.: 460MPa steel for low temperature steel	FM1	136	27
MX-A55Ni1	Y.S.: 460MPa steel for low temperature steel	FM1	138	28
DW-A55L	Y.S.: 460MPa steel for low temperature steel	FM1	136	29
MX-A55T	Y.S.: 460MPa steel for low temperature steel	FM1	138	30
DW-A55LSR	Y.S.: 460MPa steel for low temperature steel	FM1	136	31
DW-62L	Y.S.: 500MPa steel for low temperature steel	FM1	136	32
DW-A62L	Y.S.: 500MPa steel for low temperature steel	FM1	136	33
DW-A61LSR	Y.S.: 500MPa steel for low temperature steel	FM1	136	34
DW-A65L	Y.S.: 550MPa steel for low temperature steel	FM2	136	35
DW-A65Ni1	Y.S.: 550MPa steel for low temperature steel	FM2	136	36
DW-A70L	620MPa steel for low temperature steel	FM2	136	37
DW-A80L	Y.S.: 690MPa steel for low temperature steel	FM2	136	38
MX-A80L	Y.S.: 690MPa steel for low temperature steel	FM2	138	39
DW-A588	Weather proof steel	FM1	136	40

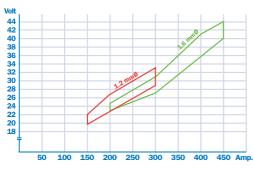
Stainless Steel and Nickel Alloy

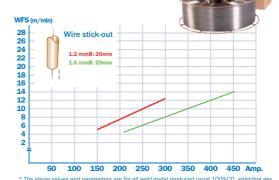
Product	Description	Filler Group EN ISO 9606-01	Process EN ISO 4063	Page
DW-308L	EN 1.4316 (308L) for welding EN 1.4301 (304L)	FM5	136	41
DW-308LP	EN 1.4316 (308L) for welding EN 1.4301 (304L)	FM5	136	42
DW-309L	EN 1.4332 (309L) for dissimilar joints and cladding	FM5	136	43
DW-309LP	EN 1.4332 (309L) for dissimilar joints and cladding	FM5	136	44
DW-309MoL	EN 1.4459 (309LMo) for dissimilar joints and cladding	FM5	136	45
DW-309MoLP	EN 1.4459 (309LMo) for dissimilar joints and cladding	FM5	136	46
DW-316L	EN 1.4430 (316L) for welding EN 1.4435 (316L)	FM5	136	47
DW-316LP	EN 1.4430 (316L) for welding EN 1.4435 (316L)	FM5	136	48
DW-329A	EN 1.4462 for welding Duplex EN 1.4462 (AISI S31803)	FM5	136	49
DW-329AP	EN 1.4462 for welding Duplex EN 1.4462 (AISI S31803)	FM5	136	50
DW-2307	EN 1.4162 for welding Lean Duplex type 1.4162 - ASTM 32101	FM5	136	51
DW-2594	EN 1.4501 for welding Super Duplex type 1.4410 & 1.4501	FM5	136	52
DW-310	EN 1.4842 for welding EN 1.4845 (310S)	FM5	136	53
DW-312	EN 1.4337 (312) for dissimilar joints and cladding	FM5	136	54
DW-308LT	EN 1.4316 for welding EN 1.4307 (304L) for Cryogenic service	FM5	136	55
DW-308LTP	EN 1.4316 for welding EN 1.4307 (304L) for Cryogenic service	FM5	136	56
DW-316LT	EN 1.4430 (316L) for Cryogenic service applications (-196°C)	FM5	136	57
DW-308H	EN 1.4948 (308H) for high temperature service applications	FM5	136	58
DW-347	EN 1.4551 (347)	FM5	136	59
DW-347LH	EN 1.4551 (347) for high temperature service applications	FM5	136	60
DW-309LH	EN 1.4332 for dissimilar joints and cladding (High temp.)	FM5	136	61
DW-309LCb	EN 1.4556 for dissimilar joints and cladding (High temp.)	FM5	136	62
DW-316LH	EN 1.4430 for high temperature service and solution treatment	FM5	136	63
DW-307	EN 1.4370 for dissimilar joints and austenitic Mn-steels (1.3401)	FM5	136	64
DW-317L	EN 1.4440 for welding EN 1.4429 (316LN) & EN 1.4438 (317L)	FM5	136	65
DW-318	EN 1.4576 (318) for 18%Cr-12%Ni-2%Mo-Nb or Ti steels	FM5	136	66
DW-A904L	EN 1.4539 (904L) for welding fully austenitic 904L steel	FM5	136	67
DW-G	Rutile cored wires from 308L, 309L and 316L for thin gauge plate	FM5	136	68
MX-A	Metal cored wires from 308L, 309L, 309MoL and 316L	FM5	138	69
MX-A430M	EN 1.4016 (430) type for 17%Cr and 13%Cr Ferritic stainless	FM5	138	70
DW-410NiMo	EN 1.4313 for welding 13Cr-Ni-Mo Martensitic stainless steel	FM5	136	71
MX-A410NiMo		FM5	138	72
DW-N82	EN 2.4806 for welding Nickel Based Alloys 600, 800	FM6	136	73
DW-N625	EN 2.4831 for welding Nickel Based Alloys 625, 825	FM6	136	74
DW-N625P	EN 2.4831 for welding Nickel Based Alloys 625, 825	FM6	136	75
DW-NC276	EN 2.4886 for welding Nickel Based Alloy C276	FM6	136	76
TG-X	Flux Cored TIG rod for root pass welding without purging gas	FM5	143	77

DW-50

100%CO₂ /80%Ar - 20%CO₂ EN ISO 17632-A-T 42 2 P C/M 1 H5 AWS A5.20 E71T-1C/1M,-9C/9M EN ISO 9606-1: FM1 EN ISO 4063: 136

KOBELCO

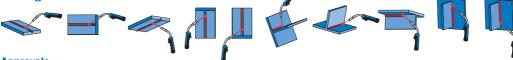

Description and Application


This rutile flux cored wire is very versatile due to its excellent welding characteristics. It is an all positional wire with negligible spatter loss, easy slag removal, soft stable arc, excellent bead profile and appearance, resulting in superb welder appeal.

DW-50 is used for butt or fillet welding of mild and Y.S.: 420MPa steels.

Due to its good mechanical properties combined with less than 5ml/100g hydrogen content in all weld metal (according to EN ISO), this wire is very well suited for constructional steel work, ship building, bridge construction, tank building, etc.

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)

Shielding gas	С	Si	Mn	P	S	Ni	Cr	Mo
100%CO ₂	0.04	0.67	1.29	0.011	0.008	-	-	-
80%Ar-20%CO ₂	0.04	0.69	1.32	0.013	0.009	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-30°C
100%CO ₂	540	607	30	76	68
80%Ar-20%CO ₂	567	626	29	121	89
Guaranty	min.420	500~640	min.20	min.47	min.27

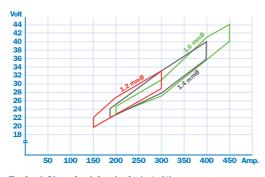
Welding Positions

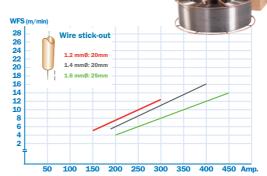
Example of Diffusible hydrogen content: 3.8 [ml/100g] 100% CO, 4.4 [ml/100g] 80%Ar-20%CO,

LR	DNV GL	BV	ABS	R.M.R.S	Others
3YS H5	III YMS H5	SA3YM H5	3SA,3YSA H5	3YMS,3Y40MS H5	RINA, CWB, CE

DW-A50

80%Ar - 20%CO₂ EN ISO 17632-Ā-T 42 2 P M 1 H5 **AWS A5.20 E71T-1M** EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

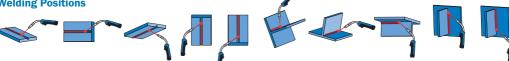

This rutile flux cored wire is very versatile due to its excellent welding characteristics. It is an all positional wire with negligible spatter loss, easy slag removal, soft stable arc, excellent bead profile and appearance, resulting in superb welder appeal.

DW-A50 is used for butt or fillet welding of mild and Y.S.: 420MPa steels.

Due to its good mechanical properties combined with less than 5ml/100g hydrogen content in all weld metal (according to EN ISO), this wire is very well suited for constructional steel work, ship building, bridge construction, tank building, etc.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)


C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.48	1.22	0.013	0.009	-	-	-

Typical Mechanical Properties

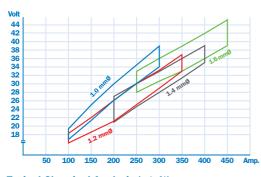
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	510	570	30	110
Guaranty	min.420	500~640	min.20	min.47

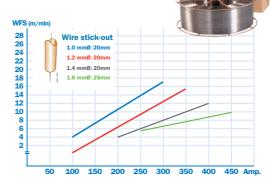
Example of Diffusible hydrogen content: 4.3 [ml/100g]

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
3YS H5	III YMS H5	SA3YM H5	3SA,3YSA H5	3Y40MS H5	TÜV, DB, RINA, CE

MX-A100


80%Ar - 20%CO₂ EN ISO 17632-A-T 42 4 M M 3 H5 AWS A5.18 E70C-6M EN ISO 9606-1: FM1 EN ISO 4063: 138


Description and Application

MX-A100 has a high percentage of metal powders in its core which provide many advantages over solid wire, such as high recovery together with high deposition rate. The deposition rate is often as much as 20% or more than that of solid wires, due to superior weldability enabling the use of higher welding currents. This wire operates with a very stable smooth arc giving very little spatter and deep penetration. Slag removal between runs is not necessary because this wire produces almost no silicate slag.

Thanks to its good arc re-striking characteristics combined with excellent wire feeding properties, this wire is an ideal choice for robotic or other kinds of mechanized welding applications.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.63	1.58	0,017	0.011	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-30°C	CV(J)-40°C
	450	550	33	102	89
Guaranty	min.420	500~640	min.20	min.47	min.47

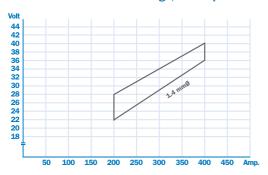
Example of Diffusible hydrogen content: 2.8 [ml/100g]

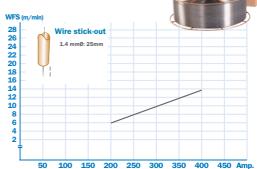
LR	DNV GL	BV	ABS	R.M.R.S	Others
4YS H5	IV YMS H5	SA4YM HHH	4YSA H5	4YMS H5	TÜV, DB, RINA, CE

MX-A100R

80%Ar - 20%CO₂ EN ISO 17632-A-T 42 2 Z M M 21 3 EN ISO 9606-1: FM1 EN ISO 4063: 138

Description and Application


MX-A100R has an exceedingly high percentage of metal powders in its core, up to +20% when compared to conventional metal cored wires. This wire achieves the highest possible productivity for fillet welds while at the same time providing ultra consistent performance coupled together with unsurpassed wire feeding capability.


MX-A100R is optimized for high amperage robotic fillet welding and produces an excellent mitre fillet profile having a smooth transition with the base material.

Thanks to its good arc re-striking characteristics combined with excellent wire feeding properties, **MX-A100R** is an excellent product for focusing on maximizing arc time, productivity, and finally

maximizing profits for the customer.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Mo
0.06	0.85	1.69	0,011	0.005	-	-	-

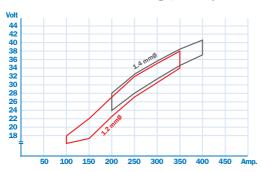
Typical Mechanical Properties

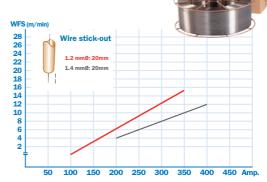
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	470	580	29	120
Guaranty	min.420	500~640	min.20	min.47

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

MX-A70C6LF


80%Ar - 20%CO EN ISO 17632-Á-T 42 3 M M 3 H5 **AWS A5.18 E70C-6M** EN ISO 9606-1: FM1 EN ISO 4063: 138


KOBELCO

Description and Application

MX-A70C6LF is a metal-cored wire for mild steel and Y.S.: 420MPa steel. This wire can be welded with less fume level in lower optimum voltage as well comparing with our conventional metal cored wire MX-A100. That is the simple reason why this newly developed metal cored wire is named as "LF" which stands for "Low Fume".

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.03	0.85	1.70	0.008	0.010	-	-	-

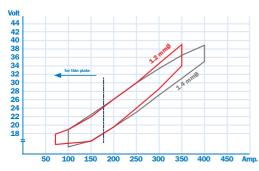
Typical Mechanical Properties

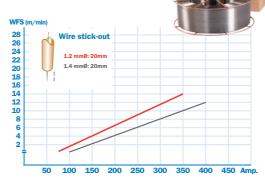
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-30°C
	445	552	31	87
Guaranty	min.420	500~640	min.20	min.47

Example of Diffusible hydrogen content: 2.9 [ml/100g]

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	SA3YM H5	-	-	CE

MX-100T


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17632-Á-T 42 2 M C/M 1 H5 AWS A5.18 E70C-6C/6M EN ISO 9606-1: FM1 EN ISO 4063: 138


Description and Application

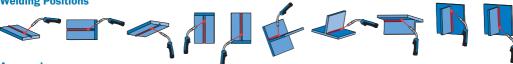
MX-100T is an all positional metal cored wire. Thanks to its excellent arc re-striking characteristics combined with excellent wire feeding properties, this wire is very well suited for welding thin plates.

This wire is especially well suited for root passes without ceramic backing, for example in pipeline construction, which leads to significant increases in productivity when compared to the TIG or stick electrode process.

Recommended Parameter Range, for flat position*

Example of Diffusible hydrogen content: 3.0 [ml/100g] CO, 3.5 [ml/100g] 80%Ar-20%CO,

* The above values and parameters are for all weld metal produced using 100%CO, shielding gas


Typical Chemical Analysis (wt. %)

Shielding gas	C	Si	Mn	P	S	Ni	Cr	Mo
100%CO ₂	0.08	0.49	1.53	0.013	0.015	-	-	-
80%Ar-20%CO ₂	0.07	0.61	1.75	0.011	0.014	-	-	-

Typical Mechanical Properties

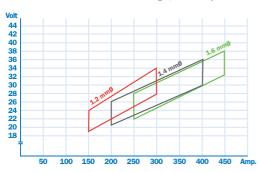
Shielding gas	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-30°C
100%CO,	480	560	31	71	62
80%Ar-20%CO ₂	500	605	28	73	65
Guaranty	min.420	500~640	min.20	min.47	min.27

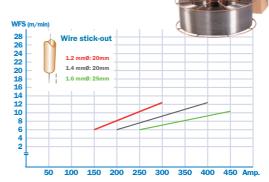
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
3YS H5	IIIYMS H5	SA3YM HHH	3SA, 3YSA H5(C1)	3Y40MS H5	TÜV,DB, CE

MX-A200

80%Ar - 20%CO₂ EN ISO 17632-A-T 42 2 R M 3 H5 AWS A5.20 E70T-1M EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application


MX-A200 is a metal type flux cored wire. This wire is designed for welding on plate coated with inorganic zinc primer or rusty plate and it has a high resistance to porosity.

MX-A200 produces a clean and shiny weld bead which is totally free from any traces of silicate slag nornally associated with metal cored or solid wires.

Due to the absence of silicate slag, painting or other surface treatments can be easily performed after welding.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.56	1.52	0.010	0.009	-	-	-

Typical Mechanical Properties

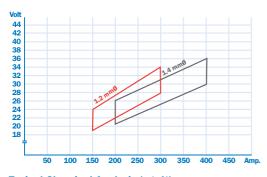
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C	CV(J)-20°C
	520	590	29	93	67
Guaranty	min.420	500~640	min.20	min.47	min.47

Example of Diffusible hydrogen content: 4.0 [ml/100g]

LR	DNV GL	BV	ABS	R.M.R.S	Others
3YS H5	III YMS H5	-	3YSA H5	-	-

MX-200E

100%CO₂ EN ISO 17632-A-T 42 3 R C 3 H5 AWS A5.20 E70T-9C EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

MX-200E is a metal type flux cored wire. This special metal cored wire has been formulated for high speed fillet welding of plate coated with modern inorganic zinc primers, or plate contaminated with rust or mill scale.

MX-200E produces a weld bead totally free from any traces of silicate slag normally associated with the welding of metal cored or solid wires.

This wire is an excellent choice for mechanised welding of horizontal fillets as it meets the requirements of superior wire feeding properties combined with high deposition efficiency and excellent resisistance to porosity. It has found wide acceptence for the fillet welding of stiffeners in the shipbuilding industry.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.60	1.60	0.008	0.007	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-30°C
	540	600	29	100
Guaranty	min.420	500~640	min.20	min.47

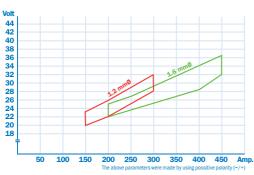
Example of Diffusible hydrogen content: 4.3 [ml/100g]

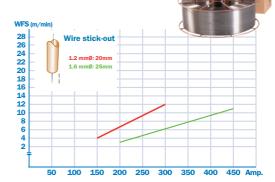
LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y40S H5	IV Y40MS H5	SA4Y40M H5	4Y400SA H5	4Y40MS H5	P.R.S., CE

DW-A51B

80%Ar - 20%CO EN ISO 17632-Á-T 42 2 B M 1 H5 AWS A5.20 E71T-5M-J EN ISO 9606-1: FM1 EN ISO 4063: 136

KOBELCO


Description and Application


DW-A51B is a fully basic FCW which produces very low hydrogen weld metal of excellent crack resistance.

This wire is particularly suitable for multipass welding of medium to heavy sections where conditions of high restraint exist and where extra low hydrogen levels are necessary.

DW-A51B is also often applied in situations where an ideal joint fit-up can not be achieved, leading to an increased risk of cracking when applying other welding consumables, for example when welding root passes on ceramic backing.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

Polarity	C	Si	Mn	P	S	Ni	Cr	Mo
DC+	0.08	0.49	1.43	0.012	0.008	-	-	-
DC-	0.08	0.46	1.45	0.011	0.008	-	-	-

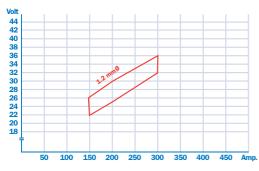
Typical Mechanical Properties

21					
Polarity	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-40°C
DC+	490	569	29	130	89
DC-	473	560	31	139	127
Guaranty	min.420	500~640	min.20	min.47	min.47

	LR	DNV GL	BV	ABS	R.M.R.S	Others
3	YS H5	III YMS H5	SA3YM H5	-	-	TÜV, DB, CE

DW-55E

100%CO EN ISO 17632-A-T 42 4 P C 1 H5 AWS A5.20 E71T-9C-J EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

DW-55E is a rutile flux cored wire that has been specially formulated to meet rigorous demands for low temperature service steels. It is applied particularly where really good thoughness is required down to -40°C.

The fast freezing slag promotes easy and very productive positional welding with slag removing easily to reveal a weld bead of smooth appearance. KOBELCO

This wire is used for butt or fillet welding of medium to heavy section carbon steels and is used widely in the shipbuilding and bridge construction industries.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Мо
0.05	0.40	1.42	0.012	0.010	0.41	-	-

Typical Mechanical Properties

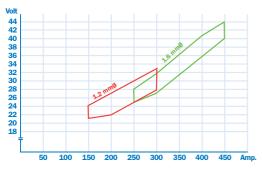
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
	540	590	29	80
Guaranty	min.420	500~640	min.20	min.47

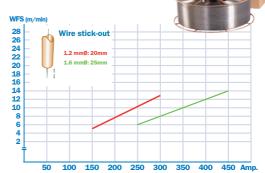
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y40S H5	IV Y40MS H5	SA4Y40M H5	4Y400SA H5	-	NK, CR

DW-A55E

80%Ar - 20%CO₂ EN ISO 17632-Ā-T 46 4 P M 1 H5 AWS A5.20 E71T-9M-J EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

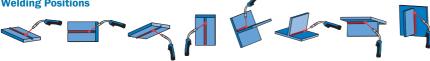

DW-A55E is a rutile flux cored wire that was specially formulated to meet rigorous demands for low temperature service steels. This wire is applied particularly where really good thoughness is required down to -40°C.

The fast freezing slag promotes easy and very productive positional welding with slag removing easily to reveal a weld bead of smooth appearance.

This wire is used for the butt or fillet welding of medium to heavy section carbon steels and is used widely in the shipbuilding and bridge construction industries.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)


C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.54	1.31	0.013	0.009	0.34	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
	540	600	28	100
Guaranty	min.460	530~680	min.20	min.47

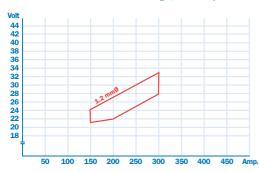
Example of Diffusible hydrogen content: 4.3 [m]/100g

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y40S H5	IV YMS H5	SA4Y40M HHH	4Y400SA H5	4Y40MS H5	TÜV.DB.RINA. CE

DW-A55ESR

80%Ar - 20%CO₂ EN ISO 17632-A-T 42 4 P M 1 H5 AWS A5.20 E71T-12M-J EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

DW-A55ESR is a rutile flux cored wire that was specially formulated to meet rigorous demands for low temperature service applications requiring really good toughness down to -40°C after post weld heat treatment.

The fast freezing slag promotes easy and very productive positional welding with slag removing easily to reveal a weld bead of smooth appearance.

This wire is used for the butt and fillet welding of medium to heavy section carbon steels and is used widely in the Offshore and Pressure vessel construction industries.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Мо
0.06	0.57	1.50	0.009	0.006	0.45	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
As welded	521	606	32	132
620°Cx3hrs(SR)	502	585	33	96
Guaranty (As welded)*	min.420	500~640	min.20	min.47

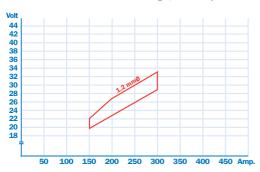
Welding Positions

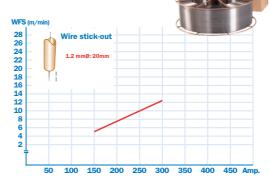
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	4Y400SA H5	-	TÜV, CE

^{*}Contact us for the Guaranty value for specific SR conditions

DW-A55S

80%Ar - 20%CO₂ EN ISO 17632-A-T46 3 P M 1 H5 **AWS A5.20 E71T-1M** EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application


DW-A55S is a rutile type flux cored wire with negligible spatter loss, easy slag removal, soft arc, excellent bead profile and appearance.

DW-A55S is suited for butt or fillet welding of Y.S.: 460MPa steels.

Due to its good mechanical properties combined with less than 5ml/100g hydrogen content in all weld metal (according to EN ISO), this wire is very well suited for constructional steel, bridge construction, tank building, etc.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.51	1.28	0.010	0.009	-	-	-

Typical Mechanical Properties

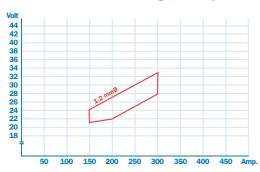
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-30°C
	535	600	26	120	100
Guaranty	min.460	530~670	min.22	-	min.47

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	IIIY42MS H5	-	-	-	RINA, CE

DW-A55EH

80%Ar - 20%CO₂ EN ISO 17632-A-T 46 4 P M 1 H5 AWS A5.20 E71T-12M-J EN ISO 9606-1: FM1 EN ISO 4063: 136


KOBELCO

Description and Application

DW-A55EH is a rutile flux cored wire that was specially formulated to meet rigorous demands for low temperature service application required really good toughness down to -40°C. This wire also can be used for applications where post weld heat treatment is required depending on the conditions and toughness requirements.

This wire is very versatile due to its excellent welding characteristics. It is an all positional wire with negligible spatter loss, easy slag removal, soft arc, excellent bead profile and appearance, resulting in superb welder appeal. This wire is used for the butt and fillet welding of medium to heavy section carbon steels and is used in the Offshore and Pressure vessel construction industries.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.63	1.17	0.010	0.007	0.38	-	-

Typical Mechanical Properties

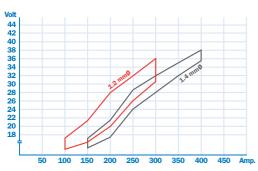
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
As welded	561	603	29	133
620°Cx3hrs(SR)	485	579	32	119
Guaranty (As welded)	min.420	500~640	min.20	min.47

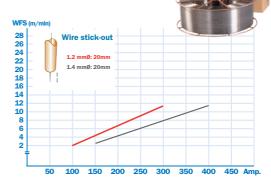
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

MX-A55S

80%Ar - 20%CO, EN ISO 17632-A T 46 4 M M21 1 H5 EN ISO 17632-B T 49 5 T15-1 M21 A H5 **AWS A5.18 E70C-6M** EN ISO 9606-1: FM1 EN ISO 4063: 138


Description and Application

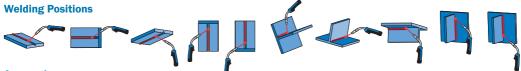

MX-A55S is a metal cored wire that produces low hydrogen weld-metal with good mechanical properties. MX-A55S is designed for excellent weldability, it is easy to achieve a flat, shiny weld bead appearance.

This wire can achieve very low silicate slag amount on the weld bead surface.

This wire is very well suited for constructional steel work, ship building, bridge construction, tank building, etc.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)


C	Si	Mn	Р	S	Ni	Cr	Mo
0.07	0.87	1.63	0.009	0.008	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-30°C	CV(J)-40°C	CV(J)-50°C
	490	610	29	120	100	80
Guaranty	min.460	530~670	min.20	-	min.47	min.27

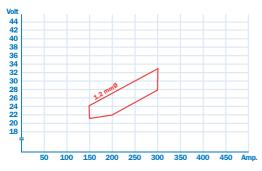
Example of Diffusible hydrogen content: 3.1 [ml/100g]

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y42S H5	IV Y42MS H5	4Y42 H5	-	-	TÜV,DB, RINA, CE

DW-A81Ni1

80%Ar - 20%CO₂ EN ISO 17632-A-T 46 6 1Ni P M 2 H5 AWS A5.29 E81T1-Ni1M-J EN ISO 9606-1: FM1 EN ISO 4063: 136

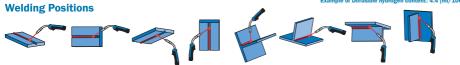

KOBELCO

Description and Application

DW-A81Ni1 is a rutile flux cored wire which has been specially formulated to meet the rigorous demands for low temperature service steels. This wire can also be used for applications where post weld heat treatment is required depending on the conditions and toughness requirement.

DW-A81Ni1 fulfills NACE requirements for oil and gas production equipment in sour gas service and these properties make for a varied range of usages in pipeline construction, offshore applications and pressure vessels.

Recommended Parameter Range, for flat position



Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.32	1.26	0.006	0.006	0.95	-	-

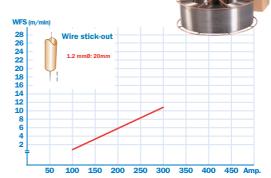
Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C	CV(J)-60°C
As welded	517	582	29	153	142
580°Cx2hr(SR)	490	578	30	139	128
Guaranty (As welded)	min 460	530~680	min 20	_	min.47

LR	DNV GL	BV	ABS	R.M.R.S	Others
5Y42S H5	VY42MS H5	-	5YQ420SA H5,4Y400SA H5	5Y42MS H5	TÜV, CE

MX-A55Ni1

80%Ar - 20%CO₂ EN ISO 17632-A-T 46 6 Mn1Ni M M 3 H5 AWS A5.28 E80C-G EN ISO 9606-1: FM1 EN ISO 4063: 138


Description and Application

MX-A55Ni1 is a metal cored wire, which has been specially formulated to meet the rigorous demands for low temperature service steels.

MX-A55Ni1 fulfills the NACE requirements for oil and gas production equipment in sour gas service and these properties make for a varied range of usages in pipeline construction, offshore applications and pressure vessels.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Мо
0.05	0.34	1.67	0.007	0.008	0.86	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-60°C
	542	607	29	123
Guaranty	min.460	530~680	min.20	min.47

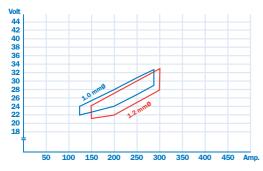
Example of Diffusible hydrogen content: 2.5 [ml/100g]

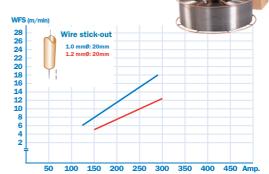
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

DW-A55L

80%Ar - 20%CO EN ISO 17632-Ā-T 46 6 1.5Ni P M 1 H5 AWS A5.29 E81T1-K2M EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application


DW-A55L is a rutile flux cored wire that has been specially formulated to meet the rigorous demands for low temperature service as found in the offshore, shipbuilding and chemical industries.

This wire has excellent weld metal toughness down to -60°C and still exhibits superb welding characteristics such as a very smooth, but forceful, stable arc producing little spatter and a fast freezing self releasing slag. KOBELCO This wire is widely applied to the welding of thin to heavy section carbon steels.

Not only does this wire have excellent CTOD values at the standard -10°C test temperature, but is also has excellent CTOD values at the very severe test temperature of -40°C.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.06	0.30	1.15	0.009	0.007	1.41	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-60°C
	558	626	27	94
Guaranty	min.460	530~680	min.20	min.47

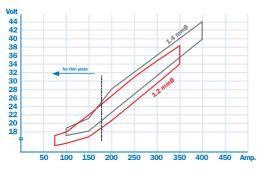
LR	DNV GL	BV	ABS	R.M.R.S	Others
5Y46S H5	VY46MS H5	S5Y46 H5	3YSA H5	5Y46MS H5	RINA,TÜV
	NV2-4,4-4		3SA		P.R.S., CE

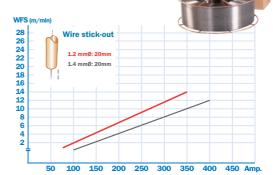
MX-A55T

80%Ar - 20%CO₂ EN ISO 17632-A-T 46 6 1.5Ni M M 1 H5 **AWS A5.28 E80C-G**

KOBELCO

EN ISO 9606-1: FM1 EN ISO 4063: 138

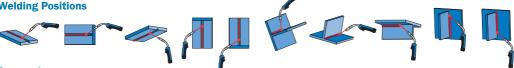

Description and Application


MX-A55T is a metal cored wire which has been developed for use with mixed gas and is specially designed to give good low temperature toughness, thus making it suitable for low temperature applications where conventional metal cored wires may not prove suitable.

This wire is applied for horizontal and downhand welding of thick sections and also for all positional root pass welding with short circuit arc transfer.

These properties result in a wire which is ideally suited to offshore fabrication and other applications where service temperatures down to -60°C are required.

Recommended Parameter Range, for flat position


Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Мо
0.06	0.35	1.41	0.011	0.017	1.48	-	-

Typical Mechanical Properties

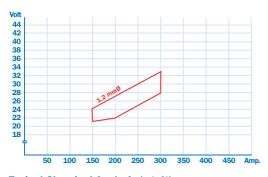
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C	CV(J)-60°C
	517	598	31	100	97
Guaranty	min.460	530~680	min.20	min.47	min.47

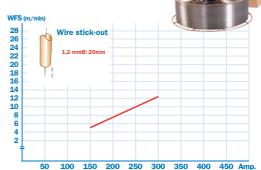
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
5Y40S H5	V YMS H5	SA3YM H5	-	-	CE
	NV2-4.4-4	MG			

DW-A55LSR

80%Ar - 20%CO₂ EN ISO 17632-A-T 46 6 Z P M 1 H5 AWS A5.29 E81T1-Ni1M EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application


DW-A55LSR is a rutile flux cored wire whose weld metal tolerates post weld heat treatment (PWHT) without an adverse degradation of mechanical properties.

DW-A55LSR produces a nominal 0.9%Ni weld metal which means that it fulfills NACE requirements for oil and gas production equipment in sour gas service.

These properties make for a varied range of usages in pipeline construction and offshore applications.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.33	1.32	0.009	0.008	0.90	-	-

Typical Mechanical Properties

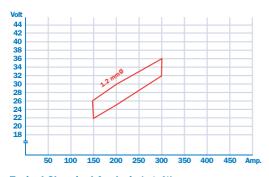
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-60°C
As welded	510	570	29	120
620°C x 2 hr (SR)	450	530	33	70
Guaranty (as welded)	min.460	530~680	min.20	min.47

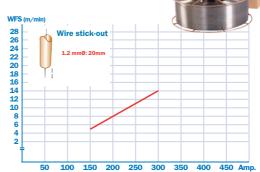
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
5Y42S H5	VY42MS H5	SA5Y42 H5	5YQ420SA H5	5Y42MS H5	P.R.S., CE
	NV2-4L.4-4L				

DW-62L

100%CO EN ISO 17632-A-T 50 6 Z P C 2 H5 AWS A5.29 E91T1-Ni2C-J EN ISO 9606-1: FM1 EN ISO 4063: 136

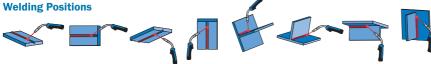

Description and Application


DW-62L is a rutile flux cored wire specially formulated to meet the rigorous demands for 500 MPa yield strength class low temperature service steels, as found in the offshore and shipbuilding industries.

Not only does this wire have excellent CTOD values at the standard -10°C test temperature, but it also has excellent CTOD values at the very severe test temperature of -40°C. KOBELCO

This wire is applied to the welding of medium to heavy section butt or fillet weld joints.

Recommended Parameter Range, for flat position


Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Мо
0.08	0.27	1.32	0.009	0.007	2.6	-	-

Typical Mechanical Properties

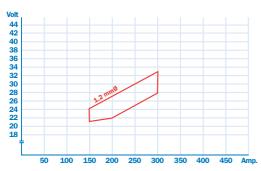
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-60°C
	601	660	25	100
Guaranty	min.500	560~720	min.18	min.47

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	5YQ500SA H5	5Y50 MS H5	CE

DW-A62L

80%Ar - 20%CO₂ EN ISO 17632-A-T 50 6 Z P M 2 H5 AWS A5.29 E91T1-Ni2M-J EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application

DW-A62L is a rutile flux cored wire specially formulated to meet the rigorous demands for 500 MPa yield strength class low temperature service steels, as found in the offshore and shipbuilding industries.

Not only does this wire have excellent CTOD values at the standard -10°C test temperature, but is also have excellent CTOD values at the very severe test temperature of -40°C. KOBELCO

This wire is applied to the welding of medium to heavy section butt or fillet weld joints.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.07	0.32	1.33	0.007	0.011	2.1	-	-

Typical Mechanical Properties

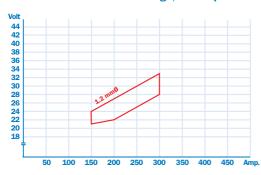
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-60°C
	561	641	27	82
Guaranty	min.500	560~720	min.18	min.47

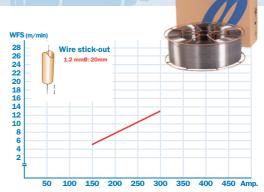
Welding Positions

	LR	DNV GL	BV	ABS	R.M.R.S	Others
5	Y50S H5	V Y50MS H5	-	5YQ500SA H5	-	CE

DW-A61LSR

80%Ar - 20%CO₂ EN ISO 17632-A-T 50 5 Z1Ni P M21 1 H5 **AWS A5.29 E91T1-GM** EN ISO 9606-1: FM1 EN ISO 4063: 136


Description and Application


DW-A61LSR is a rutile flux cored wire that was specially formulated to meet the demands for matching S500 structural steel and P500 PV-steel. It has good toughness down to -46°C after post weld heat treatment and fulfils Sour Service / NACE-requirement of Ni < 1,0% in weld metal.

The fast freezing slag promotes easy and very productive positional welding with slag removing easily to reveal a weld bead of smooth appearance. Typical applications are offshore constructions including \$500-grades, often combined with \$420- and \$460-grades.

The tensile properties of DW-A61LSR make it applicable for the welding of L450 / X65 and L485 / X70-pipes, including overmatching yield strength.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Ni	Cr	Mo
0.05	0.16	1.31	0.006	0.006	0.92	-	0.29

Typical Mechanical Properties

	R₀(MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C	CV(J)-46°C	CV(J)-50°C
As Welded	575	641	25	104	93	87
620°Cx2hrs(SR)	586	649	24	92	71	-
620°Cx4hrs(SR)	588	657	25	88	78	-
Guarantee (As welded)	min 540	620~720	min.18	_	_	min 47

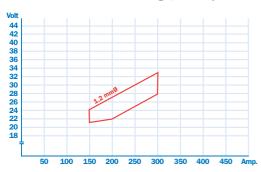
Welding Positions

Approvals

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y50S H5	IVY50MS H5	-	-	-	CE

Example of Diffusible hydrogen content: 2.2 [ml/100g]

DW-A65L


80%Ar - 20%CO₂ EN ISO 18276-Ā-T 55 4 Z P M 2 H5 AWS A5.29 E91T1-K2M-J EN ISO 9606-1: FM2 EN ISO 4063: 136

Description and Application

DW-A65L is a rutile flux cored wire specially formulated to meet the rigorous demands for 640 MPa tensile strength class low temperature service steels, as found in the offshore shipbuilding and chemical industries. This wire is applied to the welding of medium to heavy section butt or fillet weld joints.

DW-A65L continues to find new applications due to the increasing use of 550 MPa yield strength low temperature service steels.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.35	1.17	0.010	0.009	1.69	-	0.11

Typical Mechanical Properties

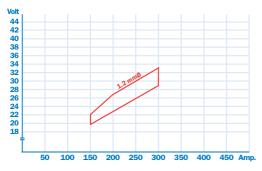
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
	601	660	24	82
Guaranty	min.550	640~820	min.18	min.47

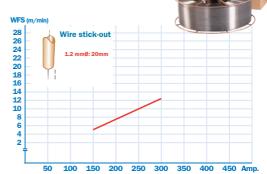
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

DW-A65Ni1

80%Ar - 20%CO EN ISO18276-A-T55 5 Mn1Ni P M 2 H5 **AWS A5.29 E91T1-GM** EN ISO 9606-1: FM2 EN ISO 4063: 136


Description and Application


DW-A65Ni1 is especially designed to meet the demands of On-Shore and Off-Shore pipelines. This wire is used for the welding of high tensile strength steels like X65, X70, including matching and/or, overmatch requirement from the nominal yield levels of these materials.

DW-A65Ni1 produces a weld metal containing max 1.0%Ni, something that also makes this wire comply with the NACE requirements for sour gas service. KOBELCO

DW-A65Ni1 is a rutile flux cored wire, ensuring good operability and weldability on fixed pipes in vertical up PH (5G) position.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Мо
0.05	0.33	1.51	0.009	0.008	0.95	-	0.16

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-50°C
	611	670	23	84
Guaranty	min.550	640~760	min.18	min.47

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y50S H5	IVY50MS (H5)	-	-	-	TÜV, CWB, CE

DW-A70L

80%Ar - 20%CO₂ EN ISO 18276-A-T 62 5 Mn1NiMo P M 2 H5 AWS A5.29 E101T1-GM EN ISO 9606-1: FM2 EN ISO 4063: 136

Description and Application

DW-A70L is especially designed to meet the increasing demands in On-Shore and Off-Shore pipelines with the introduction of high strength steels such as X70 and X80, including matching, and/or, requirements for overmatching the nominal yield levels of these materials.

DW-A70L produces a weld metal containing max 1.0%Ni, something that also makes DW-A70L comply with the NACE requirements for sour gas service, making this product very versatile for pipeline application operating on both "sweet" and "sour" conditions.

DW-A70L is a fully rutile flux cored wire, ensuring good operability and weldability on fixed pipes in vertical up PH (5G) position. The wire is designed for manual and fully automated welding processes currently applied by pipeline contractors.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.05	0.36	1.90	0.008	0.011	0.97	-	0.46

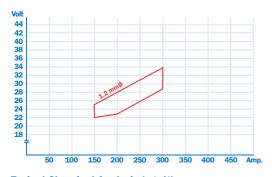
Typical Mechanical Properties

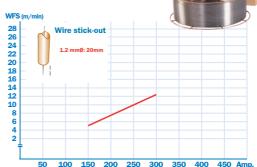
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-50°C
	663	739	21	72
Guaranty	min.620	700~890	min.18	min.47

Example of Diffusible hydrogen content: 3.7 [ml/100g]

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y62S H5	IV Y62MS H5	-	-	-	CE

DW-A80L


80%Ar - 20%CO₂ EN ISO 18276-A-T 69 6 Z P M 2 H5 AWS A5.29 E111T1-GM-H4 EN ISO 9606-1: FM2 EN ISO 4063: 136


Description and Application

DW-A80L is designed for welding 690 MPa yield strength steels that are used in heavy industries such as offshore, pipeline, crane, construction machinery, etc.

DW-A80L is a rutile flux cored wire for all positional welding. This wire provides excellent mechanical properties and crack resistance. KOBELCO

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Mo
0.07	0.32	1.82	0.008	0.006	2.42	-	0.15

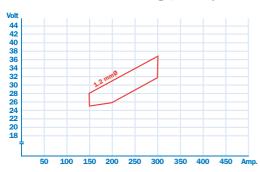
Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C	CV(J)-60°C
	739	808	22	94	83
Guaranty	min.690	770~940	min.17	-	min. 47

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
4Y69 H5	IV Y69MS H5	-	4YQ690SA H5,MG	-	CE

EN ISO 18276-A-T 69 6 Mn2.5Ni M M 3 H5 AWS A5.28 E110C-G EN ISO 9606-1: FM2 EN ISO 4063: 138


KOBELCO


Description and Application

MX-A80L is designed for welding 690 MPa yield strength steels that are used in heavy industries such as offshore, pipeline, crane, construction machinery, etc.

MX-A80L is a metal cored wire for flat and horizontal welding. This wire provides excellent mechanical properties and crack resistance.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

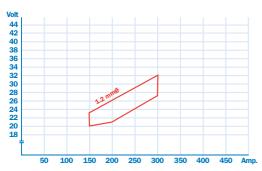
C	Si	Mn	Р	S	Ni	Cr	Мо
0.06	0.48	1.87	0.008	0.010	2.37	-	0.09

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C	CV(J)-60°C
	720	791	24	145	121
Guaranty	min.690	770~940	min.17	min.47	min.47

Example of Diffusible hydrogen content: 1.3 [ml/100g]

LR	DNV GL	BV	ABS	R.M.R.S	Others
5Y69S H5	V Y69MS H5	-	5YQ690SA H5	-	-


DW-A588

80%Ar - 20%CO₂ EN ISO 17632-A-T 50 2 Z P M 1 H10 **AWS A5.29 E81T1-W2M** EN ISO 9606-1: FM1 EN ISO 4063: 136

Description and Application

DW-A588 is suitable for butt or fillet welding of 570 MPa weather proof steel and A588 steel (which are normally used without painting). It is a rutile type FCW applicable for all positional welding. It shows good bead appearance, bead shape and low spatter generation.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Cu
0.03	0.55	1.16	0.008	0.006	0.53	0.50	0.32

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-30°C
	583	644	24	110	54
Guaranty	min.500	560~720	min.18	min.47	min.27

Welding Positions

KOBELCO

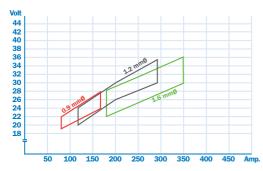
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

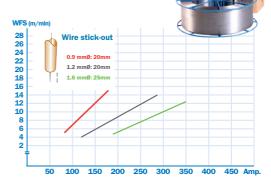
DW-308L

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A-T 19 9 L R C1/M21 3 AWS A5.22 E308LT0-1/4

KOBELCO

EN 1.4316


EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This is rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire is designed for welding 18%Cr-10%Ni type stainless steels like type 304L or EN 1.4307. Due to the low carbon content in the weld metal, it is possible to obtain high resistance to intergranular corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)

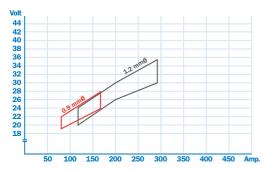
C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.60	1.60	0.020	0.005	10.1	19.7	-	-	-	8.9	12.4	10.8

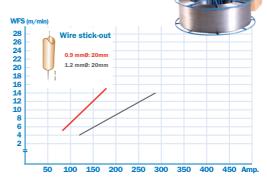
Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	410	570	40	45
Guaranty	min.320	min.520	min.30	

LR	DNV GL	BV	ABS	R.M.R.S	Others
304L	VL 308 L	-	MG	-	TÜV,DB,CWB, CE

DW-308LP

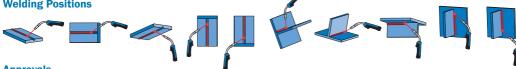

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A-T 19 9 L P C1/M21 1 AWS A5.22 E308LT1-1/4 EN 1.4316 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This is rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire is designed for welding 18%Cr-10%Ni type stainless steels like type 304L or EN 1.4307. Due to the low carbon content in the weld metal, it is possible to obtain high resistance to intergranular corrosion. KOBELCO

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)*

С	Si	Mn	P	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.70	1.70	0.019	0.004	9.9	19.5	-	-	-	9.0	12.5	10.3

Typical Mechanical Properties*

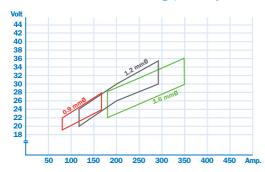
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)-20°C
	410	580	41	60	51
Guaranty	min.320	min.520	min.30		

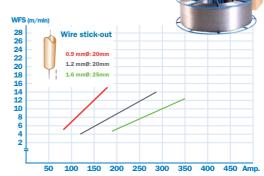
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	VL 308 L	-	E 308LT1-4/ MG (C1)	-	TÜV,DB,CWB, RINA, CE

DW-309L

EN ISO 4063: 136


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 12 L R C1/M21 3 AWS A5.22 E309LT0-1/4 EN 1.4332 EN ISO 9606-1: FM5


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire deposits a low carbon weld of about 24%Cr-13%Ni. It is designed for dissimilar welding such as welding stainless steel to mild steel or low alloy steel. The wire is also suitable for the first layer on mild or low alloy steel prior to overlaying with DW-308L or DW-308LP

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

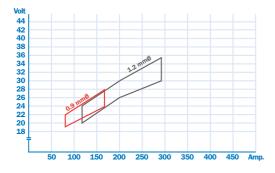
C	Si	Mn	P	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.70	1.40	0.019	0.005	12.6	23.9	-	-	-	13.2	>18.0	19.9

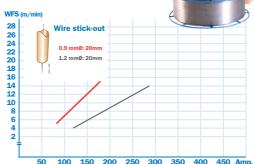
Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	450	580	35	43
Guaranty	min.320	min.520	min.30	

LR	DNV GL	BV	ABS	R.M.R.S	Others
SS/CMn	VL 309 L	309L	MG	-	TÜV,DB,CWB
Dup/CMn					RINA, CE

DW-309LP

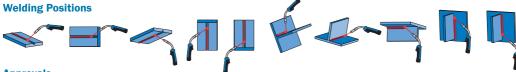

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 12 L P C1/M21 1 AWS A5.22 E309LT1-1/4 EN 1.4332 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire deposits a low carbon weld of about 24%Cr-13%Ni. It is designed for dissimilar welding such as welding stainless steel to mild steel or low alloy steel. The wire is also suitable for the first layer on mild or low alloy steel prior to overlaying with **DW-308L** or **DW-308LP**.

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.42	0.80	0.017	0.005	12.6	23.2	-	-	-	11.7	17.0	14.7

Typical Mechanical Properties*

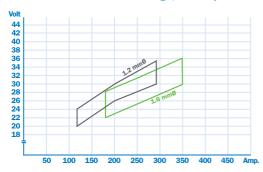
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)-20°C
	410	580	41	60	52
Guaranty	min.320	min.520	min.25		

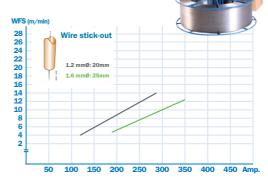
* The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

LR	DNV GL	BV	ABS	R.M.R.S	Others
SS/CMn	VL 309 L	309L	E309LT1-1/4	A-9sp	TÜV,DB,CWB, RINA, CE

DW-309MoL

EN ISO 4063: 136


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 12 2 L R C1/M21 3 AWS A5.22 E309LMoT0-1/4 EN 1.4459 EN ISO 9606-1: FM5


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing a bright, smooth weld bead surface and self releasing slag.

This wire deposits low carbon weld metal of about 23%Cr-13%Ni-2.3%Mo and is designed for dissimilar welding such as welding stainless steel to mild or low alloy steel. This wire is also suitable for the first layer welding on mild steel or low alloy steel prior to overlaying with **DW-316L/LP** or **DW-317L**.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.70	1.40	0.018	0.007	12.7	23.2	2.3	-	-	16.8	>18.0	27.0

Typical Mechanical Properties*

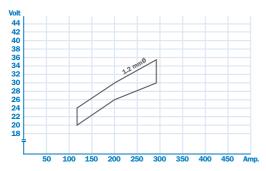
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	540	700	30	42
Guaranty	min.350	min.550	min.25	

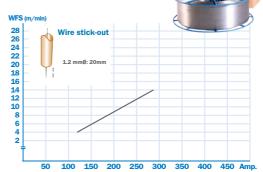
The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

LR	DNV GL	BV	ABS	R.M.R.S	Others
SS/CMn	VL 309 MoL	309MoL	-	-	TÜV,DB, CE

DW-309MoLP

EN ISO 4063: 136

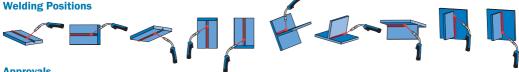

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 12 2 L P C1/M21 1 AWS A5.22 E309LMoT1-1/4 EN 1.4459 EN ISO 9606-1: FM5


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing a bright, smooth weld bead surface and self releasing slag.

This wire deposits low carbon weld metal of about 23%Cr-13%Ni-2.3%Mo and is designed for dissimilar welding such as welding stainless steel to mild or low alloy steel. This wire is also suitable for the first layer welding on mild steel or low alloy steel prior to overlaying with DW-316L/LP or DW-317L.

Recommended Parameter Range, for flat position*



Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.60	0.90	0.018	0.006	12.5	22.5	2.3	-	-	16.6	>18.0	24.4

Typical Mechanical Properties*

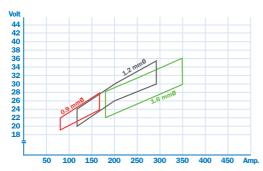
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)-20°C
	530	690	31	62	51
Guaranty	min.350	min.550	min.25		

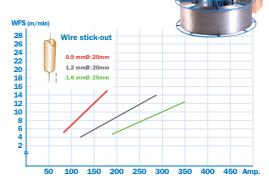
LR	DNV GL	BV	ABS	R.M.R.S	Others
SS/CMn	VL 309 MoL	309MoL	-	-	CE

DW-316L

EN ISO 4063: 136

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 19 12 3 L R C1/M21 3 AWS A5.22 E316LT0-1/4 EN 1.4430 EN ISO 9606-1: FM5


Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire is designed for welding 18%Cr-12%Ni-2.5%Mo stainless steels like type 316L or EN 1.4435. Due to the low carbon content in the weld metal, it is possible to obtain high resistance to intergranular corrosion.

DW-316L is used mainly for downhand and horizontal fillet welding.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FS	FN	FNW
0.03	0.60	1.60	0.020	0.006	12.2	18.7	2.80	-	-	7.7	12.8	9.7

Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	430	570	39	44
Guaranty	min.320	min.510	min.25	

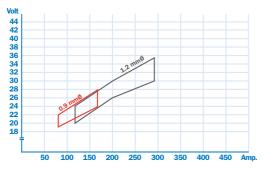
* The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

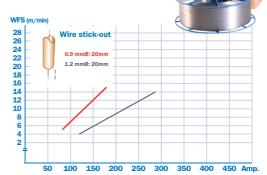
LR	DNV GL	BV	ABS	R.M.R.S	Others
316L	VL 316 L	316L	MG	-	TÜV, DB, CWB, CE

DW-316LP

EN ISO 4063: 136

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 19 12 3 L P C1/M21 1 AWS A5.22 E316LT1-1/4 EN 1.4430 EN ISO 9606-1: FM5

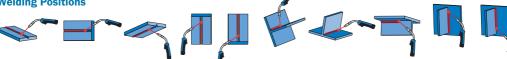

Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

This wire is designed for welding 18%Cr-12%Ni-2.5%Mo stainless steels like type 316L or EN 1.4435. Due to the low carbon content in the weld metal, it is possible to obtain high resistance to intergranular corrosion.

DW-316LP is an all positional wire and is ideal for high productivity welding in the vertical up position.

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.70	1.40	0.019	0.006	12.3	18.4	2.90	-	-	7.0	11.5	7.8

Typical Mechanical Properties*

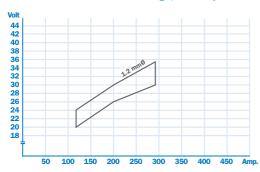
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C
	430	570	40	46
Guaranty	min.320	min.510	min.25	

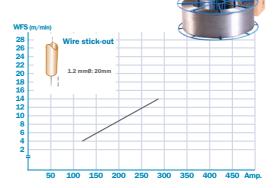
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
316L	VL316 L	316L	E316LT1-4	A-6	TÜV, CWB, RINA, CE

DW-329A

80%Ar - 20%CO₂ EN ISO 17633-A T 22 9 3 N L R M21 3 AWS A5.22 E2209T0-4 EN 1.4462 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces.

This wire is designed for welding duplex stainless steel such as AISI S31803 or EN 1.4462 stainless steels.

Due to the high nitrogen and high molybdenum content in the weld metal, it is possible to obtain excellent resistance to chloride induced pitting corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FNW
0.03	0.75	0.97	0.019	0.006	9.3	23.3	3.4	0.14	-	49.0

Typical Mechanical Properties*

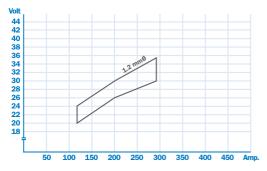
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-46°C
	656	850	29	49	43
Guaranty	min.450	min.690	min.20		

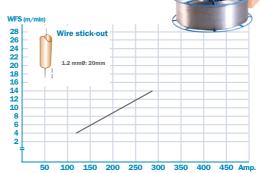
^{*} The above values and parameters are for all weld metal produced using Ar+CO2 shielding gas

	LR	DNV GL	BV	ABS	R.M.R.S	Others
S3	1803	S31803	SA2205	-	-	TÜV, RINA, CE

DW-329AP

80%Ar - 20%CO₂ EN ISO 17633-A T 22 9 3 N L P M21 1 AWS A5.22 E2209T1-4 EN 1.4462 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces.

This wire is designed for welding duplex stainless steel such as AISI S31803 or EN 1.4462 stainless steels.

Due to the high nitrogen and high molybdenum levels in the weld metal, it is possible to obtain excellent resistance to chloride induced pitting corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FNW
0.03	0.58	0.78	0.019	0.008	9.4	22.9	3.5	0.15	-	42.7

Typical Mechanical Properties*

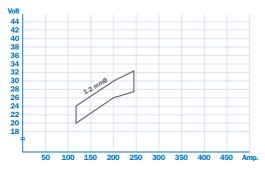
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CV(J)-46°C
	670	850	29	45	40
Guaranty	min.450	min.690	min.20		

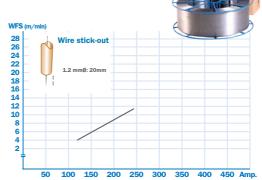
* The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
S31803	S31803	SA2205	-	AF-8dup	TÜV, RINA, CE

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 7 N L P C1/M21 2 AWS A5.22 E2307T1-1/4 EN 1.4162 EN ISO 9606-1: FM5 EN ISO 4063: 136


KOBELCO


Description and Application

DW-2307 is a rutile flux cored wire designed for welding lean duplex stainless steel EN 1.4162 / ASTM 32101 grade such as LDX2101®.

This wire operates with a stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Mo	N	Nb	FNW
0.03	0.45	1.26	0.020	0.003	7.9	24.6	-	0.16	-	45

Typical Mechanical Properties*

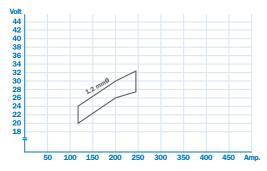
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-46°C
	571	750	29	45
Guaranty	min.450	min.650	min.15	

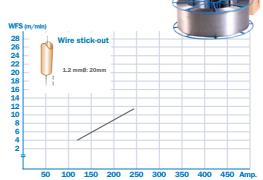
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 25 9 4 N L P C1/M21 1 AWS A5.22 E2594T1-1/4 EN 1.4501

KOBELCO


EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

DW-2594 is a rutile flux cored wire designed for welding super duplex stainless steel EN 1.4410 / ASTM 32750 grade and EN 1.4501 / ASTM 32760 grade.

This wire operates with a stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

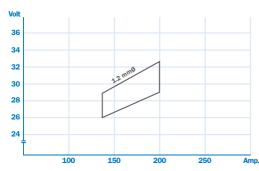
C	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FNW
0.03	0.50	1.20	0.019	0.004	9.7	25.9	3.90	0.25	-	48

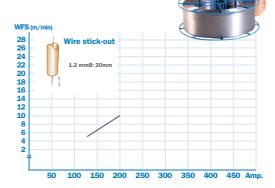
Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-40°C
	701	906	27	39
Guaranty	min.550	min.760	min.18	

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 25 20 R C1/M21 3 AWS A5.22 E310T0-1/4 EN 1.4842 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This rutile flux cored wire operates with a very stable, spatter free arc producing a bright, smooth weld bead surface and self releasing slag.

DW-310 has a full austenitic micro structure in its weld metal, so it is suited for the welding of heat resistant CrNi steels.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.18	0.60	2.10	0.016	0.005	20.4	25.5	-	-	-	-	-	-

Typical Mechanical Properties*

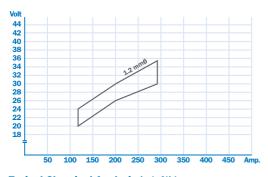
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)0°C
	420	620	33	68
Guaranty	min.350	min.550	min.20	

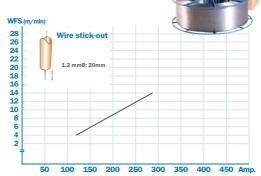
* The above values and parameters are for all weld metal produced using Ar+CO₂ shielding ga

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

80%Ar - 20%CO₂ EN ISO 17633-A T 29 9 R M21 3 EN 1.4337

EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application


This rutile flux cored wire welds with a stable and almost spatter free arc to produce a shiny, bright, smooth weld bead surface with self-releasing slag.

Excelent crack resistance is due to a combination of high alloy and high ferrite content, which gives extreme tolerance to dilution on a wide range of hardenable and alloy steels with minimum or no preheating. The weld deposit also work-hardens and provides good wear and friction resistance.

DW-312 is applied for welding medium and high carbon hardenable steels, of known or unknown specifications, for example tool steels, shafts, free-cutting steels, dissimilar alloy combinations, overlaying, buffer layers prior to hard facing.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.12	0.60	1.20	0.018	0.006	10.2	28.4	-	-	-	60.0	>18.0	50.7

Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)°C
	580	740	23	-
Guaranty	min.450	min.660	min.15	

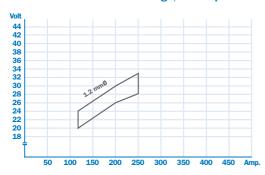
The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

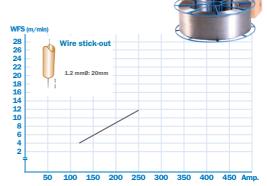
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

DW-308LT

EN ISO 4063: 136


80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E308LT0-1/4 EN 1.4316 EN ISO 9606-1: FM5


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces with self releasing slag.

This wire is designed for welding 18%Cr-10%Ni stainless steels for cryogenic use like liquified natural gas (LNG) tanks.

Recommended Parameter Range, for flat position

KOBELCO

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FS	FN	FNW
0.03	0.50	2.30	0.018	0.007	10.3	18.6	-	-	-	3.0	4.8	5.0

Typical Mechanical Properties*

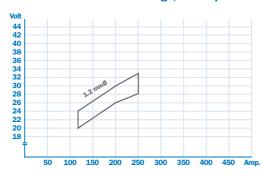
Typical Meci	CA (1)	L.E.(mm)	CA (1)	L.E.(mm)	CA (1)	L.E.(mm)			
	R _e (MPa)	R _m (MPa)	A ₅ (%)	0°C		-100°C		-196°C	
	380	530	51	69	1.40	51	0.92	39	0.52
Guaranty	min.320	min.520	min.30			min.27	min.0.34		

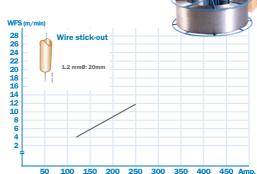
* The above values and parameters are for all weld metal produced using $\mathrm{Ar+CO}_2$ shielding gas

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-308LTP

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 19 9 L P C1/M21 1 AWS A5.22 E308LT1-1/4 EN 1.4316 EN ISO 9606-1: FM5 EN ISO 4063: 136


KOBELCO


Description and Application

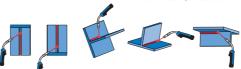
This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces with self releasing slag.

This wire is designed for welding 18%Cr-10%Ni stainless steels for cryogenic use like liquified natural gas (LNG) tanks.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.70	1.40	0.016	0.002	10.1	19.0	-	-	-	6.8	7.6	5.3


Typical Mechanical Properties*

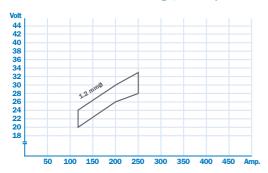
Typical Mooi	GA (1)	L.E.(mm)	GA (1)	L.E.(mm)	GA (1)	L.E.(mm)			
	R _e (MPa)		A ₅ (%)	0	°C	-10	0°C	-19	96°C
	420	640	40	61	1.12	51	0.82	42	0.45
Guaranty	min.320	min.520	min.30			min.27	min.0.34		

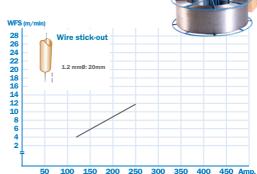
Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

DW-316LT

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E316LT1-1/4 EN 1.4430


EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This is a rutile flux cored wire which operates with a very stable, spatter free arc producing a bright, smooth weld bead surface and self releasing slag.

The wire is designed for welding 18%Cr-12%Ni-2.5%Mo stainless steels for cryogenic use like liquified natural gas (LNG) tanks.

Recommended Parameter Range, for flat position

KOBELCO

Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Mo	N	Nb	FS	FN	FNW
0.03	0.40	1.20	0.021	0.008	12.4	17.6	2.20	-	-	2.7	4.8	4.3

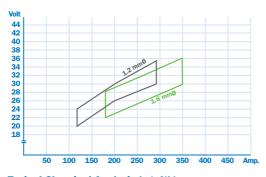
Typical Machanical Proportios*

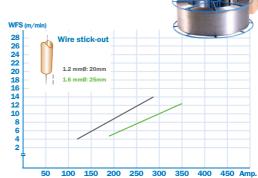
Typical Mcc	namear i ropei	tics		CA (1)	L.E.(mm)	CA (1)	L.E.(mm)	CA (1)	L.E.(mm)
	$R_{_{\mathrm{g}}}(\mathrm{MPa})$ $R_{_{\mathrm{m}}}(\mathrm{MPa})$ $A_{_{\mathrm{5}}}(\%)$		0°C		-100°C		-196°C		
	396	542	41	74	1.51	53	0.96	34	0.59
Guaranty	min.320	min.510	min.25			min.27	min.0.34		

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-308H


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A TZ 19 9 H R C1/M21 3 AWS A5.22 E308HT1-1/4 EN 1.4948 EN ISO 9606-1: FM5 EN ISO 4063: 136


KOBELCO

Description and Application

DW-308H is designed for welding 18%Cr-10%Ni stainless steels which will be applied for elevated temperatures (more than 600°C). This wire is also suitable for welding of stainless steel which is to be solution treated at elevated temperatures.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.06	0.50	1.30	0.018	0.004	9.5	19.3	-	-	-	6.6	7.5	5.6

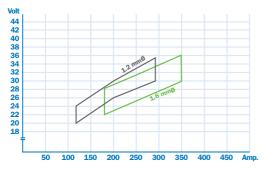
Typical Mechanical Properties*

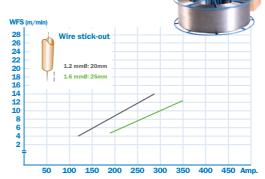
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	420	600	44	78	72
Guaranty	min.350	min.550	min.30		

^{*} The above values and parameters are for all weld metal produced using Ar+CO, shielding gas

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 19 9 Nb P C1/M21 3 AWS A5.22 E347T0-1/4 EN 1.4551


KOBELCO


EN ISO 9606-1: FM5 EN ISO 4063: 136

Description and Application

DW-347 is for welding titanium or niobium stabilized stainless steel such as 18%Cr-8%Ni-Ti or 18%Cr-8%Ni-Nb stainless steels. Due to the high niobium content in the weld metal, it is possible to prevent Cr-carbide precipitation which leads to intergranular corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.45	1.19	0.024	0.003	10.3	18.8	-	-	0.7	6.7	7.5	7.1

Typical Mechanical Properties*

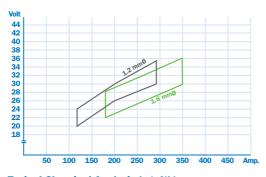
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CA(1)0 _o C
	415	608	33	91	87
Guaranty	min.350	min.550	min.30		

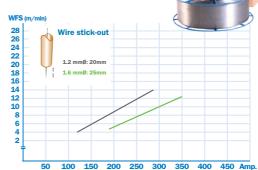
^{*} The above values and parameters are for all weld metal produced using Ar+CO₂ shielding gas

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	TÜV, CE

DW-347LH

EN ISO 4063: 136


80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 19 9 Nb P C1/M21 2 AWS A5.22 E347T1-1/4 EN 1.4551 EN ISO 9606-1: FM5


KOBELCO

Description and Application

DW-347LH is an all positional flux cored wire for welding titanium or niobium stabilized stainless steel such as 18%Cr-8%Ni-Ti or 18%Cr-8%Ni-Nb stainless steels. Due to the high niobium content in the weld metal, it is possible to prevent Cr-carbide precipitation which leads to intergranular corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.60	1.30	0.018	0.004	10.4	18.7	-	-	0.6	6.7	7.3	6.3

Typical Mechanical Properties*

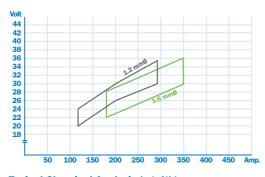
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	440	617	37	90	84
Guaranty	min.350	min.550	min.30		

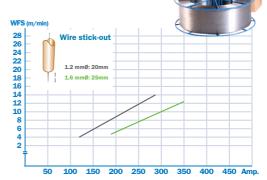
* The above values and parameters are for all weld metal produced using Ar+CO2 shielding gas

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	
-	-	-	-	-	TÜV, CE

DW-309LH

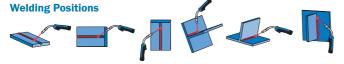

80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A T 23 12 L R C1/M21 3 AWS A5.22 E309LT1-1/4 EN 1.4332 EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application

This wire is a rutile flux cored wire that operates with a very stable spatter free arc.

DW-309LH is applied for high temperature applications where a high resistance to oxidation is required, like industrial furnaces (ovens). This wire is usually used as the buffer layer for overlay welding prior to overlaying with **DW-308H**.

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.49	1.38	0.024	0.004	12.7	23.7	-	-	-	12.1	>18	19.1

Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	406	578	31	76	73
Guaranty	min.320	min.520	min.30		

^{*} The above values and parameters are for all weld metal produced using Ar+CO2 shielding gas

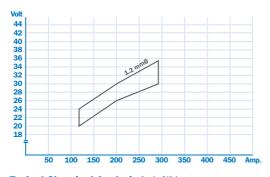
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

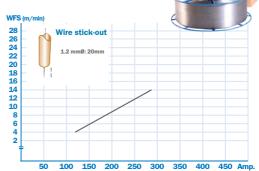
DW-309LCb

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E309LNbT1-1/4 EN 1.4556

EN ISO 9606-1: FM5

EN ISO 4063: 136


Description and Application


This wire is a rutile flux cored wire which operates with a very stable, spatter free arc producing a bright, smooth weld bead surface and self releasing slag.

This wire deposits low carbon weld with 24%Cr-13%Ni and Niobium to minimize the risk of sensitization. It is suitable for the first layer on mild or low alloy steel prior to overlaying with DW-347 or DW-347H.

This wire is also popular for petrochemical reactors when completing cladding.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)*

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.58	1.02	0.013	0.003	12.7	24.3	-	-	0.9	16	>18	25

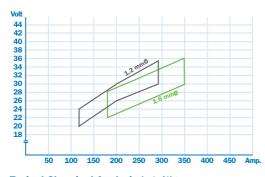
Typical Mechanical Properties*

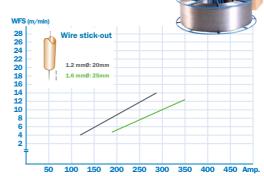
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	511	689	33	84	79
Guaranty	-	min.520	min.30		-

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-316LH

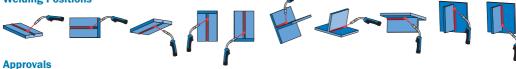

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E316LT1-1/4 EN 1.4430


EN ISO 9606-1: FM5 EN ISO 4063: 136

Description and Application

This wire is a rutile flux cored wire that operates with a very stable spatter free arc. DW-316LH is designed for welding 18%Cr-12%Ni-2.5%Mo stainless steels which will be applied for elevated temperatures.

Recommended Parameter Range, for flat position*


Typical Chemical Analysis (wt. %)*

C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.54	1.28	0.020	0.011	11.9	18.9	2.45	-	-	8.1	12.2	9.4

Typical Mechanical Properties*

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	411	561	41	67	64
Guaranty	min.320	min.520	min.3		

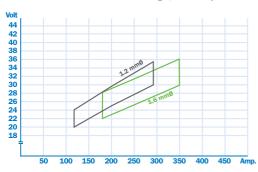
Welding Positions

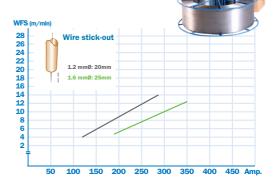
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	_

80%Ar - 20%CO₂ EN ISO 17633-Ā T 18 8 Mn R M21 3 EN 1.4370

KOBELLO

EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application


This is a versatile CrNiMn rutile flux cored wire that operates with a stable, almost spatter free arc to produce a shiny, smooth weld bead surface with a self-releasing slag.

The weld metal offers exceptionally high ductility and elongation combined with outstanding crack resistance due to the high manganese content. The weld deposit also work-hardens and provides good wear and friction resistance.

DW-307 was primarily designed for difficult to weld steels such as austenitic high manganese steels and for use in buffer layers under hard facing materials. But due to its low nickel content, it also provides a cost effective alternative to 309 welding materials for general dissimilar welding of mild steel to stainless steel.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

С	Si	Mn	P	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.07	0.60	6.4	0.02	0.008	8.1	19.2	-	-	-	1.6	3.3	9.1

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C
	393	583	41	48
Guaranty	min.350	min.500	min.25	

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	
-	*	-	-	-	TÜV,DB, CE

DW-317L

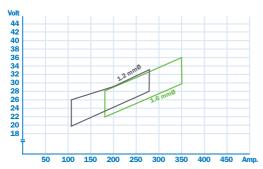
80%Ar - 20%CO₂ / 100%CO₂ EN ISO 17633-A TZ 19 13 4 L R C1/M21 3

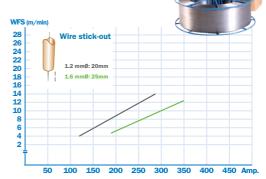
KOBELCO

AWS A5.22 E317LT0-1/4

EN 1.4440

EN ISO 9606-1: FM5 EN ISO 4063: 136


Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

DW-317L is designed for welding 18%Cr-12%Ni-2.5%Mo-N (type 316LN) or 19%Cr-12%Ni-3.5%Mo (type 317L) stainless steels.

Due to the low carbon contents in the weld metal, it is possible to obtain high resistance to intergranular corrosion.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.03	0.60	1.10	0.02	0.008	12.6	19.1	3.5	-	-	9.2	11.6	8.7

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)+20°C	CV(J)0°C
	490	620	35	61	53
Guaranty	min.350	min.520	min.20		

^{*} The above values and parameters are for all weld metal produced using Ar+CO2 shielding gas

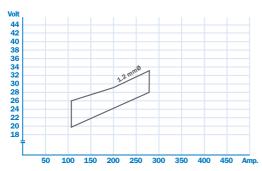
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	NV 317 L	-	-	-	CE

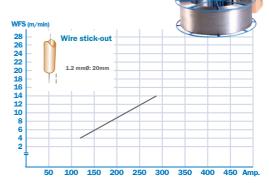
80%Ar - 20%CO₂/100%CO₂ EN ISO 17633-A-T 19 12 3 Nb P C1/M21 1

EN 1.4576

EN ISO 9606-1: FM5

EN ISO 4063: 136


Description and Application


This is a rutile flux cored wire which operates with a very stable, spatter free arc producing bright, smooth weld bead surfaces and self releasing slag.

DW-318 is designed for welding 18%Cr-12%Ni-2%Mo-Nb or Ti stainless steel. Due to its Mo and Nb content, DW-318 provides

good resistance against intergranular corrosion and non-oxidizing acid.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)

С	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.50	1.30	0.02	0.012	11.6	18.5	2.8	-	0.4	8.9	16.0	12.9

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)0°C
	511	680	31	57
Guaranty	min.350	min.550	min.25	

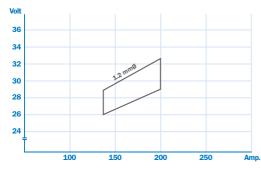
Welding Positions

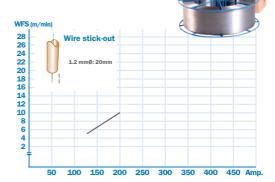
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

DW-A904L

80%Ar - 20%CO₂ EN ISO 17633-A T-20 25 5 Cu N L P M21 2 EN ISO 9606-1: FM5 EN ISO 4063: 136

KOBELLO


Description and Application


DW-904L is a rutile flux cored wire suited for the welding of 904L stainless steel (20Cr-25Ni-5Mo-Cu) which is used for manufacturing chemical vessels for use with Phosphoric acid and Sulfuric acid. This wire can be used in all positions with quite stable arc and low spatter.

DW-904L weld metal has a full austenitic micro structure which is sensitive to hot cracking. High amperage and high welding speed should be avoided to minimize the risk of hot cracking especially

for the root pass in butt joint welding.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FS	FN	FNW
0.03	0.66	1.56	0.024	0.003	25.3	20.9	4.8	0.13	_	_	_	_

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-196°C
	423	664	36	61
Guaranty	min.320	min.510	min.25	-

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	CE

PREMIARCM

DW-G308L

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E308LT0-1/4 EN ISO 9606-1: FM5

EN ISO 4063: 136

DW-G309L

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E309LT0-1/4 EN ISO 9606-1: FM5

EN ISO 4063: 136

DW-G316L

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E316LT0-1/4 EN ISO 9606-1: EM5

EN ISO 9606-1: FM5 EN ISO 4063: 136

Description and Application

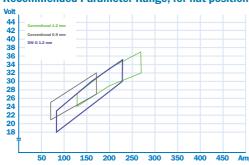
Standard rutile flux cored wires in 1.2mm diameter are a popular choice for use at higher welding currents (>150A) due to their arc stability advantage over other welding processes. KOBELCO's DW-G series rutile flux cored 1.2mm wires are specially designed to provide excellent arc properties at a much lower welding current (80A to 220A range). Thanks to their unique design, they can also be used for many applications where 0.9mm rutile flux cored wires are usually applied. Very high welding speed (above 1.5m/min.) are achievable when using 100% CO₂ shielding gas.

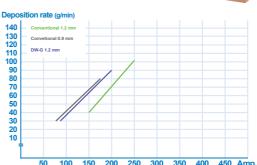
KOBELCO's DW-G wires have the following features.

1. Excellent weldability

Stable arc and self releasing slag leaves a smooth and shiny bead surface with very little spatter.

2. High deposition rate


Its unique design assures a 15% higher deposition rate than regular 1.2mm rutile flux cored wire.


3. Failure-free arc ignition

Electrically conductive flux (slag) enables easy arc re-ignition for less trouble with automatic and stop start tack welding.

Recommended Parameter Range, for flat position*

Typical Chemical Analysis (wt. %)

	С	Si	Mn	Р	S	Ni	Cr	Mo	FS	FNW
DW-G308L	0.03	0.62	1.25	0.03	0.02	9.7	19.3	-	8.9	9.7
DW-G309L	0.03	0.68	1.21	0.03	0.02	12.5	24.1	-	13.2	20.4
DW-G316L	0.03	0.61	1.24	0.03	0.02	12.2	18.6	2.3	6.5	6.9

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)
DW-G308L	380	553	38
DW-G309L	420	564	35
DW-G316L	402	549	37

* The above values and parameters are for all weld metal produced using 100%CO2 shielding gas

Applied base metal thickness (minimum)

Butt joint	Horizontal joint	Lap joint	Corner Join	Vertical Downward Fillet
1.2 mm	1.6 mm	1.2 mm	1.6 mm	1.6 mm

LR	DNV GL	BV	ABS	R.M.R.S	Others

MX-A308L

80%Ar - 20%CO₂ **AWS A5.22 EC308L** EN ISO 9606-1: FM5 EN ISO 4063: 138

MX-A309L

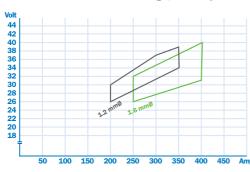
80%Ar - 20%CO₂ AWS A5.22 EC309L EN ISO 4063: 138

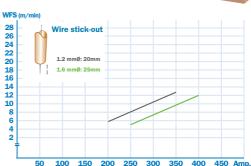
MX-A309MoL MX-A316L

80%Ar - 20%CO₂ **AWS A5.22 EC309MLo** EN ISO 9606-1: FM5 EN ISO 9606-1: FM5 EN ISO 4063: 138

80%Ar - 20%CO₂ AWS A5.22 EC316L EN ISO 9606-1: FM5 EN ISO 4063: 138

Description and Application


These are metal cored stainless steel wires which can be used at higher amperage than rutile flux cored wires. These PREMIARC™ series metal cored wires provide superior weldability, deposition rate and bead appearance compare to that of solid wires.


MX-A308L: For 18%Cr-8%Ni stainless steels.

MX-A309L: For dissimilar metal and first layer in cladding. MX-A309MoL: For dissimilar metal and first layer in cladding. MX-A316L: For 18%Cr-12%Ni-2%Mo type stainless steels.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

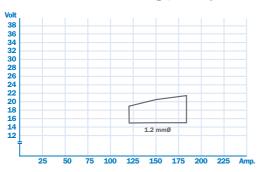
	C	Si	Ni	Cr	Mo	N	FS
MX-A308L	0.025	0.60	10.20	20.05	0.10	0.027	9.00
MX-A309L	0.025	0.62	12.38	24.06	0.10	0.028	14.00
MX-A309MoL	0.025	0.64	12.38	23.07	2.41	0.028	18.00
MX-A316L	0.025	0.49	12.18	18.99	2.23	0.028	6.5

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA (1)	°C
MX-A308L	400	570	45	93	0
MX-A309L	440	600	35	-	-
MX-A309MoL	505	705	33	-	-
MX-A316L	415	580	30	81	0

LR	DNV GL	BV	ABS	R.M.R.S	Others

MX-A430M


80%Ar - 20%CO₂ EN ISO 9606-1: FM5 EN ISO 4063: 138

Description and Application

MX-A430M is a metal cored wire for welding 17Cr and 13Cr ferritic stainless steels used in automotive exhaust systems, catalytic converters and mufflers.

In comparision with standard 430 type solid wires, **MX-A430M** offers higher resistance to burn-through when welding thin plate such as 0.8~2.0mm, superior crack resistance when welding auto parts contaminated with oil from press-forming processes and excellent corrosion and oxidation resistance.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	Р	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.05	0.40	0.14	0.008	0.017	0.08	17.0	-	-	0.75	-	-	-

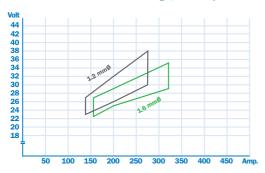
Typical Mechanical Properties

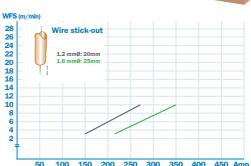
R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C
390	540	26	-

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-410NiMo

80%Ar - 20%CO₂ / 100%CO₂ AWS A5.22 E410NiMoT1-1/4 EN ISO 9606-1: FM5


EN ISO 4063: 136


Description and Application

DW-410NiMo is a rutile flux cored wire of which deposit has 12Cr-4Ni-0.5Mo type weld metal. It is suitable for the welding of 410NiMo type martensitic stainless steel such as CA6NM which is a common base material for hydro turbine components.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

С	Si	Mn	P	S	Ni	Cr	Mo	N	Nb	FS	FN	FNW
0.02	0.34	1.52	0.024	0.004	4.30	11.6	0.55	-	-	-	-	-

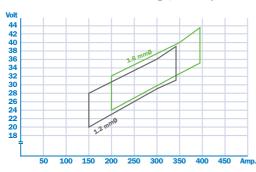
Typical Mechanical Properties

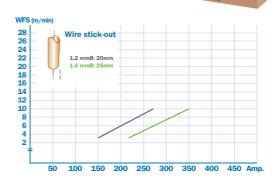
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV (J) -20°C	PWHT
	846	926	17	44	600°C x 1hr AC
Guaranty	-	min.760	min.15		

Welding Positions

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

MX-A410NiMo


80%Ar - 20%CO₂ AWS A5.22 EC410NiMo EN 1.4313 EN ISO 9606-1: FM5 EN ISO 4063: 138


Description and Application

MX-A410NiMo is a metal cored wire for 13CrNi-Mo martensitic stainless steel.

Features of this wire is low hydrogen content and high strength in deposited weld metal. Due to its corrosion resistance combined with its high abrasion resistance, this wire finds widespread use for welding water turbines used in hydropower generation plants.

Recommended Parameter Range, for flat position

KOBELLO

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Ni	Cr	Мо	N	Nb	FS	FN	FNW
0.02	0.23	0.46	0.021	0.005	4.4	11.8	0.61	-	-	-	-	-

Typical Mechanical Properties

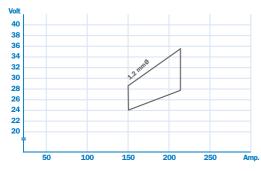
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)-20°C	CA(1)0 _o C	PWHT
	813	888	19	58	67	595°C x 8hrs AC
Guaranty	min.500	min.760	min.15			

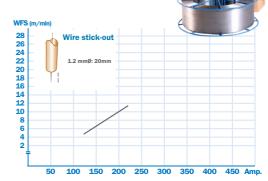
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-N82

80%Ar - 20%CO₂ EN ISO 12153 T Ni6082 P M21 3 **AWS A5.34 ENICr3T1-4** EN 2.4806 EN ISO 9606-1: FM6

KOBELCO


EN ISO 4063: 136


Description and Application

DW-N82 is a nickel based flux cored wire for welding alloy 600, 800.

DW-N82 is recommended for a variety of applications, including overlay welding of carbon steels or low alloy steels and a wide variety of dissimilar metal joints.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Cu	Ni	Cr	Mo	Fe	Nb+Ta	Ti	Co	W	V
0.02	0.20	3.0	< 0.01	0.003	< 0.01	71.4	21.1	-	0.8	2.5	0.17	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV(J)0°C	CV(J)-196°C
	394	781	44	132	125
Guaranty	min.360	min.550	min.25		

Welding Positions

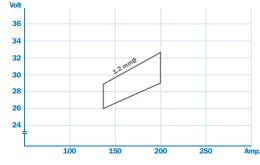
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

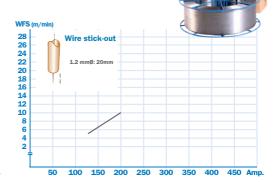
DW-N625

80%Ar - 20%CO₂ EN ISO 12153 T Ni 6625 P M21 2 AWS A5.34 ENICrMo3T1-4 EN 2.4831 EN ISO 9606-1: FM6 EN ISO 4063: 136

KOBELCO

Description and Application

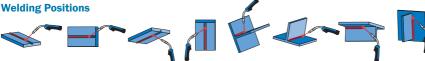

DW-N625 is a nickel based flux cored wire for welding nickel based alloys 625, 825 and also super austenitic stainless steels.


DW-N625 has a stable arc with minimal spatter, which makes it also an excellent product for welding in all positions.

This wire is recommended for a wide variety of applications, including overlay welding of carbon steel or low alloy steels and a wide variety of dissimilar metal joints.

Please note that for circumferential joining of pipes in fixed positions, DW-N625P is a better choice than DW-N625.

Recommended Parameter Range, for flat position


Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Cu	Ni	Cr	Мо	Fe	Nb+Ta	Ti	Co	W	V
0.031	0.46	0.31	0.004	0.001	0.01	63.5	22.4	8.3	0.7	3.6	0.14	-	-	-

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C	CV(J)-196°C
	501	781	45	61	54
Guaranty	min.420	min.690	min.25		

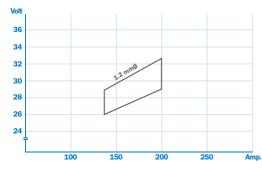
Welding Positions

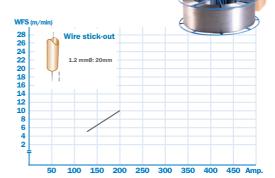
LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-N625P

EN ISO 4063: 136

80%Ar - 20%CO₂ EN ISO 12153 T Ni 6625 P M21 2 AWS A5.34 ENICrMo3T1-4 EN 2.4831 EN ISO 9606-1: FM6


Description and Application


DW-N625P is a nickel based flux cored wire for welding nickel alloys 625, 825 and super austenitic stainless steels.

DW-N625P is an ideal wire for circumferential joining of pipes including clad pipes in fixed positions. Excellent bead wetting, very stable arc, little spatter and easy slag removal on circumferential joining of pipes can be obtained by both fully automated and manual welding.

For circumferential welding of pipes in fixed position, DW-N625P offers better weld metal soundness when compared with conventional 625 type FCW's. DW-N625P still retains the advantage of much higher productivity when compared with traditional SMAW, GTAW and GSMAW (MIG).

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

	C	Si	Mn	Р	S	Cu	Ni	Cr	Мо	Fe	Nb+Ta	Ti	Co	W	V
0.	.030	0.21	0.02	0.007	0.004	0.010	65.2	21.1	8.8	1.7	3.23	0.17	-	-	-

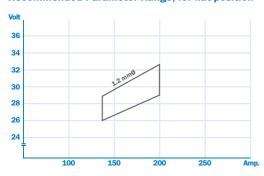
Typical Mechanical Properties

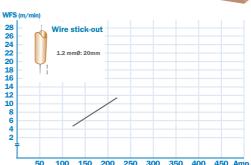
	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C	CV(J)-100°C	CV(J)-196°C
	479	765	45	84	78	70
Guaranty	min 420	min 690	min 25			

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

DW-NC276

80%Ar - 20%CO₂ AWS A5.34 ENICrMo4T1-4 EN 2.4886 EN ISO 9606-1: FM6


EN ISO 4063: 136


Description and Application

DW-NC276 is a nickel based flux cored wire for alloy C276 and super austenitic stainless steel, and is suitable for welding in all positions with Ar-CO_a mixture gas. This wire is often applied for overlay welding for applications were excellent corrosion resistance is required.

Recommended Parameter Range, for flat position

Typical Chemical Analysis (wt. %)

C	Si	Mn	P	S	Cu	Ni	Cr	Mo	Fe	Nb+Ta	Ti	Co	W	V
0.014	0.17	0.64	0.007	0.004	0.03	58.3	15.1	16.0	5.4	-	-	0.04	3.6	0.01

Typical Mechanical Properties

	R _e (MPa)	R _m (MPa)	A ₅ (%)	CA(1)0 _o C	CV(J)-100°C	CV (J)-196°C
	466	719	46	67	59	53
Guaranty	min.400	min.690	min.25			

LR	DNV GL	BV	ABS	R.M.R.S	Others
-	-	-	-	-	-

TG-X308L 100%Ar

TG-X309L 100%Ar

TG-X316L

TG-X347 100%Ar

TG-X2209 100%Ar

EN 1.4316

AWS A5.22 R 308LT1-5 AWS A5.22 R 309LT1-5 EN 1.4332

EN 1.4430

AWS A5.22 R 316LT1-5 AWS A5.22 R 347T1-5 EN 1.4551

EN 1.4462

EN ISO 9606-1: FM5 EN ISO 4063: 143

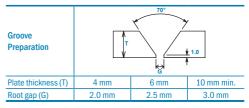
Description and Application

These are all rutile flux cored TIG filler rods for root pass welding of stainless steel pipe without the need for a reverse side back purge (internal shielding gas). As they produce a slag, they are not recommended for multi-pass welding.

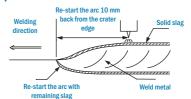
TG-X308L is for welding 18%Cr-8%Ni type stainless steel.

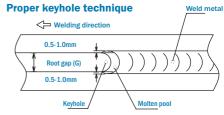
TG-X309L is for dissimilar joints between stainless and mild

steel or medium carbon steels.


TG-X316L is for 18%Cr-12%Ni-2%Mo stainless steel.

is for 18%Cr-8%Ni+Ti or 18%Cr-8%Ni+Nb stabilized TG-X347


stainless steel.


TG-X2209 for welding duplex 1.4462 stainless steel.

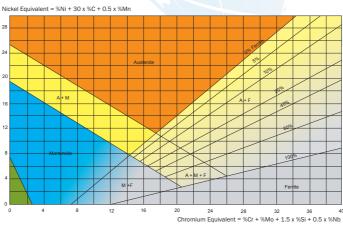
Proper root gap

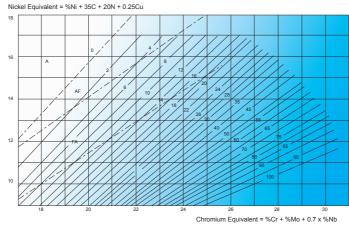
Proper bead connection

Typical Chemical Analysis (wt. %)

	С	Si	Mn	P	S	Ni	Cr	Mo	N	Nb+Ta	FS	FN	FNW
TG-X308L	0.02	0.80	1.70	0.023	0.005	10.3	19.6	-	-	-	9	13	-
TG-X309L	0.02	0.80	1.50	0.022	0.006	12.6	24.3	-	-	-	14	>18	-
TG-X316L	0.02	0.90	1.60	0.023	0.004	12.5	18.9	2.3	-	-	8	13	-
TG-X347	0.02	0.80	1.60	0.021	0.004	10.2	19.0	-	-	0.7	9	13	-
TG-X2209	0.02	0.64	1.84	0.015	0.003	9.5	23.1	3.34	0.15	-	-	-	47

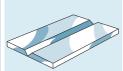
Welding Positions


Typical Mechanical Properties


	R _e (MPa)	R _m (MPa)	A ₅ (%)	CV (J)	°C
TG-X308L	450	620	47	60	-196
TG-X309L	530	680	32	85	-20
TG-X316L	440	600	38	90	-20
TG-X347	460	630	48	110	-20
TG-X2209	603	811	32	138	-50

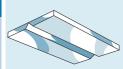
DeLong Diagram (FN)

Nickel Equivalent = %Ni + 30 x %C + 30 x %N + 0.5 x %Mn 21 20 19 18 17 16 15 14 13 12 11 10 16 17 18 19 20 21 22 23 24 25 26 21 Chromium Equivalent = %Cr + 96Mo + 1.5 x %Si + 0.5 x %Nb


Schaeffler Diagram (FS)

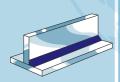
WELDING POSITIONS

Butt welds


AWS: 1G EN: PA

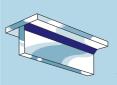
AWS: 2G EN: PC

AWS: 3G EN: PG • Down PF • Up



AWS: 4G EN: PE

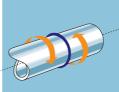
Fillet welds


AWS: 1F EN: PA

AWS: 2F EN: PB

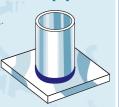
AWS: 3F EN: PG • Down PF • Up

AWS: 4F EN: PD

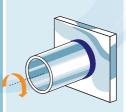

Pipe welds

AWS: 1G EN: PA

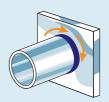
AWS: 2G EN: PC



AWS: 5G EN: PJ • Down PH • Up



AWS: 6G EN: H-L045 - up J-L045 - down


Fillet welds on pipe

AWS: 2F EN: PB

AWS: 2FR EN: PB

AWS: 5F EN: PJ • Down PH • Up

AWS: 4F EN: PD

AWS A5.20/A5.20M:2021, A5.29/A5.29M:2022

A5.20: Carbon steel electrodes for flux cored arc welding A5.29: Low alloy electrodes for flux cored arc welding

Classification system

A 5.20 : E 1 2 A 5.29 : E 1 2 3

Τ-

- <u>J HZ</u>

(Ex.) E7 1 T-1 M - J H8

(Ex.) E8 1 T-1 - B2 M - J H8

• E: Designates electrodes

• T: Designates flux-cored electrodes

- J HZ

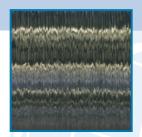
1 All-weld metal tensile strength and related requirement (1)

Ondo	Tensile	Strength	Impact absorbed energy,
Code	ksi	MPa	Min. ft-lb (J)
6	60-80	410-550	
7	70-90	480-620	Average 20 (27)
8	80-100	550-690	Each 15 (20)
9	90-110	620-760	at specific temperature
10	100-120	690-830	depending on classification
11	110-130	760-900	Glassification
12	120-140	830-970	

2 Welding position

Code	Designation
0	F, HF
1	All positions

Note: (1) PWHT is required depending on classification


4 Shielding gas

Suffix	Designation
М	75%-80%Ar/Bal. CO ₂
С	CO ₂
None	Self-shield

5 Chemical composition of all-weld metal (A 5.29)

Suffix	Туре	Suffix	Туре
A1	C-Mo steel	Ni1	
B1		Ni2	Ni steel
B1L		Ni3	
B2		D1	
B2L		D2	Mn-Mo steel
B2H		D3	
В3		K1	
B3L		K2	
взн		K3	
B6	Cr-Mo steel	K3	
B6L		K4	
B8		K5	Other low-alloy
B8L		K6	steels
		K7	
		K8	
		К9	
		W2	
		G	

3 Performances

Suffix (1)	Performances (Type of flux, Polarity, Application)
1	MAG, Rutile type, Fillet welding (Multi-pass)
2	MAG, Rutile type, Fillet welding (Single-pass)
3	Self-shielded, DC-EP, High welding speed
4	Self-shielded, DC-EP, High deposition rate
5	MAG, Lime type, High impact value, Good crack resistance
6	Self-shielded, DC-EP, High impact value
7	Self-shielded, DC-EN, High deposition
8	Self-shielded, DC-EN, High deposition rate
9	MAG, Rutile type, DC-EP, Small size: for all positions
10	Self-shielded, DC-EN, High welding speed
11	Self-shielded, DC-EN, Good usability
12	MAG, Rutile type, DC-EP, High impact value
13	Self-shielded, DC-EN, Root pass welding of pipes
14	Self-shielded, DC-EN, All positions, High welding speed
G	Not specified, For multiple-pass welding
GS	Not specified, For single-pass welding

Note: (1) A 5.29 designates 1, 4, 5, 6, 7, 8, 11 or G only.

Option.

J: Satisfies the minimum Charpy impact value 27J at -40°C (A5.20) or at a test temperature of 11°C lower (A5.29) than the specified temperature.

HZ: Diffusible hydrogen

Suffix	Diffusible hydrogen, Max. ml/100g deposited metal
H16	16.0
Н8	8.0
H4	4.0
None ⁽¹⁾	8.0

Note: (1) A 5.29 only.

AWS A5.22-2012

Stainless steel electrodes for flux cored arc welding Stainless steel flux-cored rods for gas tungsten arc welding

Classification system

U U

т 3

(Ex.) E <u>308L</u> T <u>1</u> -<u>1</u>

1

т 3

(Ex.) R 308L T 1 -5

- E: Designates welding electrodes
- . T: Designates flux-cored electrodes or rods
- R: Designates welding rods
- 1 Weld metal chemical composition and related requirements (See A5.22 for self-shielded wires)

		Chemical composition of all-weld metal (%) (1)(2)										Typical Mechanical Properties of all-weld metal (as welded) TS, Min EL., Min.			
											TS,	EL., Min.			
Classification	С	Cr	Ni	Mo	Cb+Ta	Mn	Si	P	S	Cu	ksi	MPa	(%)		
E307	0.13	18.0-20.5	9.0-10.5	0.5-1.5	-	3.30-4.75	1.0	0.04	0.03	0.5	85	590	30		
E308	0.08	18.0-21.0	9.0-11.0	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	80	550	35		
E308H	0.04-0.08	18.0-21.0	9.0-11.0	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	80	550	35		
E308L	0.04	18.0-21.0	9.0-11.0	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	35		
E308Mo	0.08	18.0-21.0	9.0-11.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	80	550	35		
E308LMo	0.04	18.0-21.0	9.0-12.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	35		
E309	0.10	22.0-25.0	12.0-14.0	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	80	550	30		
E309L	0.04	22.0-25.0	12.0-14.0	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	30		
E309LCb	0.04	22.0-25.0	12.0-14.0	0.5	0.70-1.00	0.5-2.5	1.0	0.04	0.03	0.5	75	520	30		
E309Mo	0.12	21.0-25.0	12.0-16.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	80	550	25		
E309LMo	0.04	21.0-25.0	12.0-16.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	25		
E309LNiMo	0.04	20.5-23.5	15.0-17.0	2.5-3.5	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	25		
E310	0.20	25.0-28.0	20.0-22.5	0.5	-	1.0-2.5	1.0	0.03	0.03	0.5	80	550	30		
E312	0.15	28.0-32.0	8.0-10.5	0.5	-	0.5-2.5	1.0	0.04	0.03	0.5	95	660	22		
E316	0.08	17.0-20.0	11.0-14.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	30		
E316L	0.04	17.0-20.0	11.0-14.0	2.0-3.0	-	0.5-2.5	1.0	0.04	0.03	0.5	70	485	30		
E317L	0.04	18.0-21.0	12.0-14.0	3.0-4.0	-	0.5-2.5	1.0	0.04	0.03	0.5	75	520	20		
E347	0.08	18.0-21.0	9.0-11.0	0.5	8xC-1.00	0.5-2.5	1.0	0.04	0.03	0.5	75	520	30		
R308L	0.03	18.0-21.0	9.0-11.0	0.5	-	0.5-2.5	1.2	0.04	0.03	0.5	75	520	35		
R309L	0.03	22.0-25.0	12.0-14.0	0.5	-	0.5-2.5	1.2	0.04	0.03	0.5	75	520	30		
R316L	0.03	17.0-20.0	11.0-14.0	2.0-3.0	-	0.5-2.5	1.2	0.04	0.03	0.5	70	485	30		
R347	0.08	18.0-21.0	9.0-11.0	0.5	8xC-1.00	0.5-2.5	1.2	0.04	0.03	0.5	75	520	30		

		Chemical composition of all-weld metal (%) (1)(2)											rties
												El., Min.	PWHT
Classification	С	Cr	Ni	Мо	Mn	Si	P	S	Cu	ksi	MPa	(%)	
E409	0.10	10.5-13.5	0.60	0.5	0.80	1.0	0.04	0.03	0.5	65	450	15	None
E410	0.12	11.0-13.5	0.60	0.5	1.2	1.0	0.04	0.03	0.5	75	520	20	(a)
E410NiMo	0.06	11.0-12.5	4.0-5.0	0.40-0.70	1.0	1.0	0.04	0.03	0.5	110	760	15	(b)
E410NiTi	0.04	11.0-12.0	3.6-4.5	0.5	0.70	0.50	0.03	0.03	0.5	110	760	15	(b)
E430	0.10	15.0-18.0	0.60	0.5	1.2	1.0	0.04	0.03	0.5	65	450	20	(c)
E502	0.10	4.0-6.0	0.40	0.45-0.65	1.2	1.0	0.04	0.03	0.5	60	415	20	(d)
E505	0.10	8.0-10.5	0.40	0.85-1.20	1.2	1.0	0.04	0.03	0.5	60	415	20	(d)

		Chemical composition of all-weld metal (%) (1)(2)											Typical Mechanical Properti of all-weld metal (3)		
		, , , ,										TS, Min		PWHT	
Classification	С	Cr	Ni	Mo	Mn	Si	P	S	N	Cu	ksi	MPa	(%)		
E2209	0.04	21.0-24.0	7.5-10.0	2.5-4.0	0.5-2.0	1.0	0.04	0.03	0.08-0.20	0.75	100	690	20	None	
E2553	0.04	24.0-27.0	8.5-10.5	2.9-3.9	0.5-1.5	0.75	0.04	0.03	0.10-0.20	1.5-2.5	110	760	15	None	
E2594	0.04	24.0-27.0	8.0-10.5	2.5-4.5	0.5-2.5	1.0	0.04	0.03	0.20-0.30	0.20-0.30	110	760	15	None	

Note: (1) Single values are maximum

- (2) The total of other elements, except iron, shall not present in excess of 0.5%.
- (3) All-weld-metal mechanical properties are obtained after the following PWHT:
 - a: Heated to 1350 to 1400°F (732 to 760°C), held for 1 hour, then furnace cooled to 600°F (315°C) at a rate not to exceed 100°F (55°C) per hour, then cooled in air to room temperature.
 - b: Heated to 1100 to 1150 $^{\circ}\text{F}$ (593 to 621 $^{\circ}\text{C}$), held for 1 hour, then cooled in air to room temperature.
 - c: Heated to 1400 to 1450°F (760 to 788°C), held for 4 hours, then furnace cooled to 1100°F (593°C) at a rate not to exceed 100°F (55°C) per hour, then cooled in air to room temperature.
 - d: Heated to 1550 to 1600°F (840 to 870°C), held for 2 hours, then furnace cooled to 1100°F (593°C) at a rate not to exceed 100°F (55°C) per hour, then cooled in air to room temperature.

2 Position of weldings

Code	Welding position
0	Flat and horizontal
1	All positions

3 External shielding medium and related requirements

Code	External shielding medium	Welding polarity	Welding process
1	CO ₂	DC-EP	FCAW
3	None (self-shielded)	DC-EP	FCA
4	75%-80%Ar/bal. CO ₂	DC-EP	FCA
5	100%Argon	DC-EN	GTA

AWS A5.34/A5.34M:2020

Nickel-Alloy Electrodes for Flux Cored Arc Welding

Classification system

Ni 1 - 2 3 (Ex.) TNi <u>6082</u> - <u>0</u> <u>4</u>

- E: Designates welding electrodes
- . T: Designates flux-cored electrodes or rods
- 1 Weld metal chemical and mechanical requirements

Classification	Chemical composition of all-weld metal(%) ⁽³⁾⁽²⁾										
Traditional	ISO format	С	Mn	Fe	Р	S	Si	Cu	Ni ⁽³⁾	Co	Ti
Cr3	6082	0.10	2.5-3.5	3.0	0.03	0.015	0.50	0.50	67.0 min.	(5)	0.75
CrFe1	6062	0.08	3.5	11.0	0.03	0.015	0.75	0.50	62.0 min.	-	-
CrFe2	6133	0.10	1.0-3.5	12.0	0.03	0.02	0.75	0.50	62.0 min.	(5)	-
CrFe3	6182	0.10	5.0-9.5	10.0	0.03	0.015	1.0	0.50	59.0 min.	(5)	1.0
Mo13	1013	0.10	2.0-3.0	10.0	0.020	0.015	0.75	0.50	58.0 min.	-	-
CrMo2	6002	0.05-0.15	1.0	17.0-20.0	0.04	0.03	1.0	0.50	Balance	0.50-2.50	-
CrMo3	6625	0.10	0.5	5.0(4)	0.02	0.015	0.50	0.50	58.0 min.	(5)	0.40
CrMo4	6276	0.02	1.0	4.0-7.0	0.03	0.03	0.2	0.50	Balance	2.5	-
CrMo10	6022	0.02	1.0	2.0-6.0	0.03	0.015	0.2	0.50	Balance	2.5	-
CrCoMo1	6117	0.05-0.15	0.3-2.5	5.0	0.03	0.015	0.75	0.50	Balance	9.0-15.0	-

Weld metal chemical and mechanical requirements (Continued)

Classification	CI	Chemical composition of all-weld metal(%) ⁽¹⁾⁽²⁾					Mechanical properties of all-weld metal ⁽⁷⁾	
Traditional	ISO format	Cr	Nb(Cb)+ Ta ⁽⁶⁾	Мо	V	w	TS, Min (ksi)	El., Min. (%)
Cr3	6082	18.0-22.0	2.0-3.0	-	-	-	80	25
CrFe1	6062	13.0-17.0	1.5-4.0	-	-	-	80	25
CrFe2	6133	13.0-17.0	0.5-3.0	0.5-2.5	-	-	80	25
CrFe3	6182	13.0-17.0	1.0-2.5	-	-	-	80	25
Mo13	1013	4.0-8.0	-	16.0-19.0	-	2.0-4.0	100	25
CrMo2	6002	20.5-23.0	-	8.0-10.0	-	0.2-1.0	90	25
CrMo3	6625	20.0-23.0	3.15-4.15	8.0-10.0	-	-	100	25
CrMo4	6276	14.5-16.5	-	15.0-17.0	0.35	3.0-4.5	100	25
CrMo10	6022	20.2-22.5	-	12.5-14.5	0.35	2.5-3.5	100	25
CrCoMo1	6117	21.0-26.0	1.0	8.0-10.0	-	-	90	25

- (1) Single values are maximum.
- (2) The total of other elements shall not present in excess of 0.50%.
- (3) Includes residual cobalt.
- (4) Iron is 1.0 maximum when specified by the purchaser.
- (5) Cobalt is 0.10 maximum when specified by the purchaser.
- (6) Tantalum is 0.30 maximum when specified by the purchaser.
- (7) As-welded condition.
- 2 Welding Position

Code	Welding position
0	Flat and horizontal fillet
1	All positions

3 Shielding gas

Code	External shielding medium	
1	CO ₂	
3	None (self-shielded)	
4	75%-80%Ar/bal. CO ₂	

EN ISO 17632:2015

Tubular cored electrodes for gas shielded or self-shielded metal arc welding of non-alloy and fine-grain steels.

Classification (system A)

EN ISO 17632-A-T 1 2 3 4 5 6

[Ex.] EN ISO 17632-A-T 46 3 1Ni B M 4 H5

- T: Designates tubular cored electrodes for metal arc welding
- 1 Yield strength and related requirements
- (a) Multiple-layer welding Yield strength of all-weld metal

Code	Yield strength or 0.2% offset strength Min. (MPa)	Tensile strength (MPa)	Elongation (L=5D) Min. (%)
35	355	440~570	22
38	380	470~600	20
42	420	500~640	20
46	460	530~680	20
50	500	560~720	18

(b) Single pass welding Yield strength of weld joint

Code	Yield strength of base metal Min. (MPa)	Tensile strength of weld joint Min. (MPa)
3Т	355	470
4T	420	520
5T	500	600

2 Impact value of all-weld metal or weld joint

Code	Test temp. (°C)	Impact absorbed energy Min. (J)
Z	Not required	
А	+20	
0	0	
2	-20	Average 47
3	-30	Avelage 41
4	-40	
5	-50	
6	-60	

3 Chemical composition of all-weld metal

	Chemical composition ⁽¹⁾ %				
Code	Mn	Ni	Мо		
-	2.0	-	-		
Мо	1.4	-	0.3-0.6		
MnMo	1.4~2.0	-	0.3-0.6		
1Ni	1.4	0.6-1.2	-		
1.5Ni	1.6	1.2-1.8	-		
2Ni	1.4	1.8-2.6	-		
3Ni	1.4	2.6-3.8	-		
Mn1Ni	1.4~2.0	0.6-1.2	-		
1NiMo	1.4	0.6-1.2	0.3-0.6		
Z	Other elements as agreed				

Note: (1) Single values are maximum.

Where no specification, Mo<0.2% Ni<0.5%, Cr<0.2%, V<0.08%, Nb<0.05%, Cu<0.3%, and for

self-shielded wires, Al<2.0%

4 Type of cored flux

Code	Features	Type of welding	Shielding gas
R	Rutile, Slow-freezing slag		
Р	Rutile, Fast-freezing slag	Single pass or multiple pass	Required
В	Basic		
М	Metal powder		
V	Basic/Fluorides or Rutile	Single pass	
W	Basic/Fluorides Slow-freezing slag	Single pass or	Not required
Y	Basic/Fluorides Fast-freezing slag	multiple pass	
Z	Other types		

5 Shielding gas

Code	Designation
M21	Gas mixtures (Gases specified as M2 per ISO 14175 except He)
C1	${\rm CO_2}$ (Gases specified as C1 per ISO 14175)
N	Self-shielded

6 Welding position (Option)

Code	Designation
1	All positions
2	All positions except vertical downward
3	Flat butt and fillet, Horizontal fillet
4	Flat butt and fillet
5	Vertical downward and those specified in the code 3

7 Diffusible hydrogen (option)

Code	Diffusible hydrogen, max. ml/100g deposited metal
Н5	5
H10	10
H15	15

EN ISO 17633:2018

Tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels

Classification (system A)

EN ISO 17633-A-T 1

[Ex.] EN ISO 17633-A-T

• T: Designates tubular cored electrodes for gas shielded and non-gas shielded metal arc welding

1 Chemical composition and mechanical properties of all-weld metal

	Chemical composition (%)			Proof strength Min. Rp0.2	Tensile strength Min. Rm	EI. (L=5D) Min. A	PWHT	
Classification	Cr	Ni	Мо	Others	(MPa)	(MPa)	%	
Martensite/ferrite	e type							
13	11.0-14.0	-	-	-	250	450	15	(2)
13 Ti	10.5-13.0	-	-	Ti ⁽¹⁾	250	450	15	(2)
13 4	11.0-14-5	3.0-5.0	0.4-1.0	-	500	750	15	(4)
17	16.0-18.0	-	-	-	300	450	15	(5)
Austenite type								
19 9 L	18.0-21.0	9.0-11.0	-	-	320	510	30	None
19 9 Nb	18.0-21.0	9.0-11.0	-	Nb∞	350	550	25	None
19 12 3 L	17.0-20.0	10.0-13.0	2.5-3.0	-	320	510	25	None
19 12 3 Nb	17.0-20.0	10.0-13.0	2.5-3.0	Nb∞	350	550	25	None
Austenite-ferrite	high corrosion resistar							
22 9 3 N L	21.0-24.0	7.5-10.5	2.5-4.0	N:0.08-0.20	450	550	20	None
23 7 N L	22.5-25.5	6.5-10.0	-	N:0.10-0.20	450	570	20	None
25 9 4 N L	24.0-27.0	8.0-10.5	2.5-4.5	N:0.20-0.30	550	620	18	None
25 9 4 Cu N L	24.0-27.0	8.0-10.5	2.5-4.5	N:0.20-0.30	550	620	18	None
				Cu: 1.0-2.5				
Full-austenite hig	h corrosion resistant t	type						
18 16 5 N L	17.0-20.0	15.5-19.0	3.5-5.0	N:0.08-0.20	300	480	25	None
19 13 4 N L	17.0-20.0	12.0-15.0	3.0-4.5	N: 0.08-0.20	350	550	25	None
20 25 5 Cu N L	19.0-22.0	24.0-27.0	4.0-6.0	N:0.10-0.20	320	510	25	None
				Cu:1.0-2.0				
Special type	Special type							
18 8 Mn	17.0-20.0	7.0-10.0	-	-	350	500	25	None
20 10 3	19.5-22.0	9.0-11.0	2.0-4.0	-	400	620	20	None
23 12 L	22.0-25.0	11.0-14.0	-	-	320	510	25	None
23 12 2 L	22.0-25.0	11.0-14.0	2.0-3.0	-	350	550	25	None
29 9	27.0-31.0	8.0-12.0	-	-	450	650	15	None
Heat resistant type								
19 9 H	18.0-21.0	9.0-11.0	-	-	350	550	25	None
22 12 H	20.0-23.0	10.0-13.0	-	-	350	550	20	None

Note: (1) Ti:10xC%-1.5%

(2) Nb:8xC%-1.1%: Nb can be replaced with Ta up to 20%

(3) 840-870°Cx2H heating, followed by FC to 600°C and later AC

(4) 580-620°Cx2H heating, followed by AC

(5) 760-790°Cx2H heating, followed by FC to 600°C and later AC

2 Type of cored flux

Code	Features
R	Rutile, Slow-freezing slag
Р	Rutile, Fast-freezing slag
М	Metal powder
U	Self-shielded
Z	Other types

3 Shielding gas

Code	Designation
M21	Gas mixtures (Gases specified as M2 per ISO 14175 except He)
C1	${ m CO_2}$ (Gases specified as C1 per ISO 14175)
N	Self-shielded

4 Welding position (Option)

Code	Designation
1	All positions
2	All positions except vertical- downward
3	Flat butt and fillet, Horizontal fillet
4	Flat butt and fillet
5	Vertical downward and those specified in the code 3

EN ISO 18276:2017

Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of heat-strength steels.

Classification (system A)

EN ISO 18276-A-T 1 2 3 4 5 6

[Ex.] EN ISO 18276-A-T <u>55</u> <u>5</u> Mn1.5Ni B M 4 H5 T

• T: Designates tubular cored electrodes for gas shielded and non-gas shielded metal arc welding

All-weld metal yield strength and related requirements

Code	Yield strength or 0.2% offset strength Min. (MPa)	Tensile strength (MPa)	Elongation (L=5D) Min. (%)
55	550	640~820	18
62	620	700~890	18
69	690	770~940	17
79	790	880~1080	16
89	890	940~1180	15

2 Impact value of all-weld metal

Code	Absorbed energy of 47J, Three-specimen average, ⁽¹⁾ Test temp. (°C)
Z	Not required
Α	+20
0	0
2	-20
3	-30
4	-40
5	-50
6	-60

Note: (1) One value can be lower than 47 J but be 32 J or higher

3 Chemical composition of all-weld metal

	Chemic	(%)		
Code	Mn	Ni	Cr	Мо
Z	Elements as agreed			
MnMo	1.4-2.0	-	-	0.3-0.6
Mn1Ni	1.4-2.0	0.6-1.2	-	-
Mn1, 5Ni	1.1-1.8	1.3-1.8	-	-
Mn2, 5Ni	1.1-2.0	2.1-3.0	-	-
1NiMo	1.4	0.6-1.2	-	0.3-0.6
1, 5NiMo	1.4	1.2-1.8	-	0.3-0.7
2NiMo	1.4	1.8-2.6	-	0.3-0.7
Mn1NiMo	1.4-2.0	0.6-1.2	-	0.3-0.7
Mn2NiMo	1.4-2.0	1.8-2.6	-	0.3-0.7
Mn2NiCrMo	1.4-2.0	1.8-2.6	0.3-0.6	0.3-0.6
Mn2Ni1CrMo	1.4-2.0	1.8-2.6	0.6-1.0	0.3-0.6

Note: (1) Single values are maximum.

4 Type of cored flux

Code	Features
R	Rutile, Slow-freezing slag
Р	Rutile, Fast-freezing slag
В	Basic
М	Metal powder
Z	Other type

5 Shielding gas

Code	Designation
M21	Gas mixtures
C1	CO ₂

6 Welding position (Option)

Code	Designation
1	All positions
2	All positions except vertical downward
3	Flat butt and fillet, Horizontal fillet
4	Flat butt and fillet
5	Vertical downward and those specified in the code 3

7 Diffusible hydrogen (option)

Code	Diffusible hydrogen, max. ml/100g deposited metal
Н5	5
H10	10

8 Heat treatment: T: 560-600°Cx1h, Furnace Cooling to 300°C for mechanical tests of all-weld metal

Abbreviations

Annieviations	
General	
Α	Ampere
AC	Air Cooling
ASTM	American Society for Testing and Materials
AWS	American Welding Society
A ₅	Elongation
CO	Carbon dioxide
CTOD	Crack Tip Opening Displacement
CTWD	Contact Tip to Work Distance
CV	Charpy Impact Value
EN	European Norm
FC	Furnace Cooling
FCW	Flux Cored Wire
FN	Ferrite according to DeLong Diagram
FNW	Ferrite according to WRC Diagram - 1992
FS	Ferrite according to Schaeffler Diagram
HAZ	Heat Affected Zone
ISO	International Standards Organisation
KSL	KOBE STEEL, LTD.
KWE	KOBELCO WELDING OF EUROPE B.V.
MIG / MAG	Metal Inert Gas / Metal Active Gas
NACE	National Association of Corrosion Engineers
PWHT	Post Weld Heat Treatment
$R_{\rm e}$	0.2% Proof Stress
R _m	Tensile Strength
SR	Stress Relief
TIG	Tungsten Inert Gas
=/-	Direct Current Straight Polarity (DCSP)
=/+	Direct Current Reverse Polarity (DCRP)
Approval Bureaus	
ABS	American Bureau of Shipping
BV	Bureau Veritas
CCS	China Classification Society
CWB	Canadian Welding Bureau
DNV	Det Norske Veritas
DB	Deutsche Bahn
GL	Germanischer Lloyd
KR	Korean Register of Shipping
LR	Lloyd's Register of Shipping
NAKS	Национальное Агентство Контроля Сварки
NK	Nippon Kaiji Kyokai
P.R.S.	Polski Rejestr Statkow
RINA	Registro Italiano Navale
R.M.R.S	Russian Maritime Resister of Shipping
RRR	Russian River Register
TÜV	Technischer Überwachungs-Verein
Positions (EN and AWS A3.0)	
PA	Flat Fillet (1F), Flat Butt (1G) and rotating horizontal Pipe weld (1G)
PB	Horizontal Fillet / Standing Fillet (2F)
PC	Horizontal Vertical Butt or Pipe weld (2G)
PD	Overhead Fillet weld (4F)
PE	Overhead Butt weld (4G)
PF	Vertical Up for both Butt (3G) and Fillet welds (3F)
PG	Vertical Down for both Butt (3G) and Fillet welds (3F)
PH	Vertical up welding on fixed horizontal pipe (5G)
PJ	Vertical down welding on fixed horizontal pipe (5G)

H-L045

J-L045

Fixed pipe welded under 45 degree angle welding upwards (6G uphill)

Fixed pipe welded downwards under 45 degree angle (6G downhill)

Storage & Handling

Transport

Outside transportation in original packaging must be carried out in covered vehicles, and direct exposure to rain and snow must be avoided

Warehouse and central storage

Flux cored wires should be stored in their original, undamaged packaging, under dry conditions with a temperature ranging from 10-30°C, and a maximum 80% relative humidity. Product must not be placed directly on the floor, but on wooden pallets or similar.

Product should be stored at least 10 cm above floor level and at least 10 cm away from walls.

Handling

- If welding is carried out in an environment exposed to damp, rain, snow, sea air or dust, encased wire feeding systems shall be applied.
- Cored wires removed from their original packaging may be kept in a normal heated workshop for up to 5 days. Following this period the wire should be placed in a heated store place.
- When used outside, or in unheated workshops, the wire should be removed from the wire feeder and put in a heated storage when not used during an 8-hour period.
- If taken back to the storage, the wire should be placed in a plastic bag or similar.
- Storage time for opened packaging is up to 24 months, as long as there is no sign of rust or discoloration on the wire surface.
- Do not lift a spool by its flange, because wire can get tangled.

DON'T LIFT A SPOOL BY ITS FLANGE!

Wrong

Correct

Shelf life

• Guaranty period of flux cored wires is within 24 months from production date.

Scrapping

- Any trace of rust visible on the wire indicates that incorrect storage conditions have been used.
- Wire that shows any signs of rust must be scrapped.
- In the case it is suspected that cored wire has been stored incorrectly, KOBELCO recommends scrapping.

QA Manager

List of addresses

Europe:

KOBELCO WELDING OF EUROPE B.V.

Eisterweg 8, 6422 PN, Heerlen, The Netherlands Tel.: +31-45-547 1111, Fax: +31-45-547 1100

Direct: +31-45-547 1127 www.kobelcowelding.nl

e-mail: marketing@kobelcowelding.nl

North America:

KOBELCO WELDING OF AMERICA INC.

Houston Head Office 4755 Alpine, Suite 250, Stafford, Texas 77477 USA

Tel.: (1) 281 240 5600, Fax: (1) 281 240 5625 www.kobelcowelding.com

Asia:

KOBELCO WELDING OF SHANGHAI CO., LTD.

8F, B District, No. 1010, Kai Xuan Road Shanghai, 200052 People's Republic of China Tel.: (86) 21 6191 7850, Fax: (86) 21 6191 7851

KOBE WELDING OF TANGSHAN CO., LTD.

196, Huoju Road, Tangshan, New & High-Tech Development Zone, Tangshan, Hebel, 063020 People's Republic of China

Tel.: (86) 315 385 2806, Fax: (86)315385 2829

KOBE WELDING OF QINGDAO CO., LTD.

South 6th Rd. and West 35th Rd., FUYUAN Industrial Estate Qingdao Development Area, Qingdao, 266555 P.R. China Tel.: (86) 532-8098-5005, Fax: (86) 532-8098-5008

KOBELCO

Asia:

KOBE STEEL,LTD.

Welding Business Global Operations & Marketing Department 9-12 Kita-Shinagawa 5-chome, Shinagawa-ku, Tokyo, 141-8688, Japan Tel.: (81) 3 5739 6331, Fax: (81) 3 5739 6960 www.kobelco.co.jp/english

KOBE WELDING OF KOREA CO., LTD.

21-14 Palryong-Dong, Changwon, Kyongnam Republic of Korea Tel.: (82) 551 92-6886, Fax: (82) 552 92-7786

KOBE WELDING MARKETING OF KOREA CO., LTD.

303, Daedong-ro, Sasang-Gu, Busan, 46981, Republic of Korea Tel.: +82-51-329-8999, Fax: +82-51-329-89496

KOBE WELDING ASIA PACIFIC PTE. LTD.

237, Pandan Loop, #07-10 Westech Building, Singapore 609387 Republic of Singapore Tel.: (65) 6268 2711, Fax: (65) 6264 1751

THAI-KOBE WELDING CO., LTD.

500 Moo 4 Soi 1, Bangpoo Industrial Estate, Sukhumvit Rd, Praeksa, Muang Samutprakarn, 10280 Thailand Tel.: (66) 2 324 0588 to 0591 Fax: (66) 2 324 0797

KOBE MIG WIRE (THAILAND) CO., LTD.

491 Moo 4 Soi 1, Bangpoo Industrial Estate Sukhumvit Rd, Praeksa, Muang Samutprakarn, 10280 Thailand Tel.: (66) 2 324 0588 to 0591 Fax: (66) 2 324 0797

KOBE WELDING (MALAYSIA) SDN. BHD.

Plot 502, Jalan Perusahaan Baru, Kawasan Perusahaan Pral, 13600 Prai, Malaysia Tel. (60) 4 3905792, Fax. (60) 4 3905827

P.T. INTAN PERTIWI INDUSTRI

(Technically Collaborated Company)
Jalan P Jayakarta 45, Block A/27, Jakarta
11110 Indonesia
Tel.: (62) 21 639 2608, Fax: (62) 21 649 6081

KOBELCO WELDING INDIA PVT. LTD.

Unit No. 409

Corporate Suites MG Road Gurgaon

Haryana, 122003 India

Tel.: +91-124-4010063, Fax: +91-124-4010068

Version 2023.02.02

Notes	
	3 de la companya del companya de la companya del companya de la co
	ms as c

DISCLAIMER

The information in this booklet such as chemical compositions and mechanical properties is typical or example for explaining the features and performance of our products, and it does not guarantee otherwise specified. Information contained herein is subject to change without notice. Please contact KOBELCO for the latest information.

Notes

Notes

Notes

